Profile
International Journal of Clinical Nutrition & Dietetics Volume 7 (2021), Article ID 7: IJCND-160, 9 pages
https://doi.org/10.15344/2456-8171/2021/160
Research Article
Coumaric Acid and Ferulic Acid Present in Supina Grass Interact Synergistically to Remediate Adhesion and Biofilm Formation of Candida Albicans (A72 and SC5314)

Fatima M Alessa1, Vicki Schlegel2,*, and An Tien Nguyen3

1Department of Food Science and Nutrition, College of Agriculture and Food Science, King Faisal University, KSA
2Department of Food Science and Technology , College of Agriculture and Food Science, University of Nebraska Lincoln, USA
3Department of Agriculture and Forestry, Dalat University, Dalat, Vietnam
Dr Vicki Schlegel, Department of Food Science and Technology , College of Agriculture and Food Science, University of Nebraska Lincoln, USA; E-mail: vschlegel3@unl.edu
13 September 2021; 23 October 2021; 25 October 2021
Alessa FM, Schlegel V, Nguyen AT (2021) Coumaric Acid and Ferulic Acid Present in Supina Grass Interact Synergistically to Remediate Adhesion and Biofilm Formation of Candida Albicans (A72 and SC5314). Int J Clin Nutr Diet 7: 160. doi: https://doi.org/10.15344/2456-8171/2021/160

References

  1. Teodoro GR, Ellepola K, Seneviratne CJ and Koga-Ito CY (2015) Potential Use of Phenolic Acids as Anti-Candida Agents: A Review. Front Microbiol 6: 1420. [CrossRef] [Google Scholar] [PubMed]
  2. Morgan J, Meltzer MI, Plikaytis BD, Sofari AN, Huie-White S, et al. (2005) Excess morality, hospital stay, and cost due to candidemia, a case control study using data from population-based condidemia surveillance. Infect Cont Hosp Epidemiol 26: 540-547. [CrossRef] [Google Scholar] [PubMed]
  3. Han T, Cannon RD, Villas-Boas SG (2011) The metabolic basis of Candida albicans morphogenesis and quorum sensing. Fungal Genet Biol 48: 747-763. [CrossRef] [Google Scholar] [PubMed]
  4. Nobile CJ, Mitchell AP (2006) Genetics and genomics of Candida albicans biofilm formation. Cell Microbiol 8: 1382-1391. [CrossRef] [Google Scholar] [PubMed]
  5. Bauter TG, Moerman M, Vermeersch H, Nelis HJ (2002) Colonization of voice prostheses by albicans and non-albicans Candida species. Laryngoscope 112: 708-712. [CrossRef] [Google Scholar] [PubMed]
  6. Miller LG, Hajjeh RA, Edwards JE Jr (2001) Estimating the Cost of Nosocomial Candidemia in the United States. Clinical Infectious Diseases 32: 1110. [CrossRef] [Google Scholar]
  7. Sakagami Y, Kajimura K (2002) Bactericidal activities of disinfectants against vancomycin-resistant enterococci. J Hosp Infec 50: 140-144. [CrossRef] [Google Scholar] [PubMed]
  8. Nascimento GGF, Locatelli J, Freitas PC, Silva GL (2000) Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria. Braz J Microbiol 31: 247-256. [CrossRef] [Google Scholar]
  9. Papadopoulou C, Soulti K, Roussis IG (2005) Potential antimicrobial activity of red and white wine phenolic extracts against strains of staphylococcus aureus, escherichia coli and candida albicans. Food Technol Biotechnol 43: 41. [Google Scholar]
  10. Hirasawa M, Takada K (2004) Multiple effects of green tea catechin on the antifungal activity of antimycotics against Candida albicans. J. Antimicrob Chemoth 53: 225-229. [CrossRef] [Google Scholar] [PubMed]
  11. Maciel MAM, Pinto AC, Veiga Jr VF, Grynberg NF, Echevarria A, et al. (2002) Medicinal plants: the need for multidisciplinary scientific studies. Quim Nova 25: 429-438. [CrossRef] [Google Scholar]
  12. Negri M, Salci TP, Shinobu-Mesquita CS, Capoci IR, Svidzinski TI, et al. (2014) Early state research on antifungal natural products. Molecules 19: 2925-2956. [CrossRef] [Google Scholar] [PubMed]
  13. Alzoreky NS, Nakahara K (2003) Antibacterial activity of extract of some edible plants commonly consumed in Asia. Int J Food Microbiol 80: 223-230. [CrossRef] [Google Scholar] [PubMed]
  14. More GK, Tshikalange TE, Lall N, Botha FS, Meyer JJM, et al. (2008) Antimicrobial activity of medicinal plants against oral microorganisms. J Ethnopharmacol 119: 473-477. [CrossRef] [Google Scholar] [PubMed]
  15. Shinobu-Mesquita CS, Bertoni TA, Guilhermetti E, Svidzinski TIEIE (2011) Antifungal activity of the extract of Curcuma zedoaria (christm.) roscoe, zingiberaceae, against yeasts of the genus Candida isolated from the oral cavity of patients infected with the human immunodeficiency virus. Rev Bras Farmacogn 21: 128-132. [CrossRef] [Google Scholar]
  16. Pessini GL, Holetz FB, Sanches NR, Cortez DAG, Dias Filho BP, et al. (2003) Avaliação da atividade antibacteriana e antifúngica de extratos de plantas utilizados na medicina popular. Rev Bras Farmacogn 13: 21-24. [CrossRef] [Google Scholar]
  17. Tempone AG, Sartorelli P, Teixeira D, Prado FO, Calixto IARL, et al. (2008) Brazilian flora extracts as source of novel antileishmanial and antifungal compounds. Mem Inst Oswaldo Cruz 103: 443-449. [CrossRef] [Google Scholar] [PubMed]
  18. Rajeh MAB, Zuraini Z, Sasidharan S, Latha LY, Amutha S, et al. (2010) Assessment of Euphorbia hirta L. leaf, flower, stem and root extracts for their antibacterial and antifungal activity and brine shrimp lethality. Molecules 15: 6008-6018. [CrossRef] [Google Scholar] [PubMed]
  19. Kumar RS, Sivakumar T, Sunderam RS, Gupta M, Mazumdar UK, et al. (2005) Antioxidant and antimicrobial activities of Bauhinia racemosa L. Stem bark. Braz J Med Biol Res 38: 1015-1024. [CrossRef] [Google Scholar] [PubMed]
  20. Wagner H, Ulrich-Merzenich G (2009) Phytomedicine 16: 97-110.
  21. Polaquini SRB, Svidzinski TIE, Kemmelmeier C, Gasparetto A (2006) Effect of aqueous extract from neem (Azadirachta indica A. Juss) on hydrophobicity, biofilm formation and adhesion in composite resin by Candida albicans. Arch Oral Biol 51: 482-490. [CrossRef] [Google Scholar] [PubMed]
  22. Madhumitha G, Saral AM (2011) Preliminary phytochemical analysis, antibacterial, antifungal and anticandidal activities of successive extracts of Crossandra infundibuliformis. Asian Pac J Trop Med 4: 192-195. [CrossRef] [Google Scholar] [PubMed]
  23. Karimi E, Jaafar HZE, Ahmad S (2013) Antifungal, anti-inflammatory and cytotoxicity activities of three varieties of Labisia pumila benth: from microwave obtained extracts. BMC Complement. Altern Med 13: 20. [CrossRef] [Google Scholar]
  24. Barbieri DS, Tonial F, Lopez PV, Sales Maia BH, Santos GD, et al. (2014) Antiadherent activity of Schinus terebinthifolius and Croton urucurana extracts on in vitro biofilm formation of Candida albicans and Streptococcus mutans. Arch Oral Biol 59: 887-896. [CrossRef] [Google Scholar] [PubMed]
  25. Lakshmi T, Geetha RV, Roy A (2011) In vitro Evaluation of Anti bacterial Activity of Acacia catechu willd Heartwood Extract. International journal of Pharma and Biosciences. [View]
  26. Nohyne LJ, Alakomi HL, Kähkönen MP, Heinonen M, Helander IM, et al. (2006) Berry Phenolics: Antimicrobial Properties and Mechanisms of Action Against Severe Human Pathogens. Nutr Cancer 54: 18-32. [CrossRef] [Google Scholar] [PubMed]
  27. Chen F, D'Auria JC, Tholl D, Ross JR, Gershenzon J, et al. (2003) An Arabidopsis thaliana gene for methylsalicylate biosynthesis, identified by a biochemical genomics approach, has a role in defense. Plant J 36: 577-588. [CrossRef] [Google Scholar] [PubMed]
  28. Rauha JP, Remes S, Heinonen M, Hopia A, Kähkönen M, et al. (2000) Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. Int J Food Microbiol 56: 3-12. [CrossRef] [Google Scholar] [PubMed]
  29. Wagner H, Ulrich-Merzenich G (2009) Synergy research: approaching a new generation of phytopharmaceuticals. Phytomedicine 16: 97-110. [CrossRef] [Google Scholar] [PubMed]
  30. Margerie P, Decaëns T, Bureau F, Alard D (2001) Spatial distribution of earthworm species assemblages in a chalky slope of the Seine Valley (Normandy, France). European Journal of Soil Biology 37: 291-296. [CrossRef] [Google Scholar]
  31. Thompson MD, Thompson HJ (2010) Botanical Diversity in Vegetable and Fruit Intake: Potential Health Benefits. Bioactive Foods in Promoting Health. [CrossRef] [Google Scholar]
  32. Odey MO, Iwara IA, Udiba UU, Johnson JT, Inekwe UV, et al. (2012) Preparation of plant extracts from indigenous medicinal plants. Int J Sci Tech 1: 688-692. [Google Scholar]
  33. Leinauer B, Schulz H, Bar D, Huber A (1997) Poa supina Schrad: A new species for turf. Int Turfgrass Soc Res J 8: 345-351. [Google Scholar]
  34. Ray SD, Lam TS, Rotollo JA, Phadke S, Patel C, et al. (2004) Oxidative stress is the master operator of drug and chemically-induced programmed and unprogrammed cell death: Implications of natural antioxidants in vivo. Biofactors 21: 223-232. [CrossRef] [Google Scholar] [PubMed]
  35. Singleton VL, Rossi Jr JA (1965) Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. Am J Enol Vitic 16: 144-158. [Google Scholar]
  36. Adom KK, Liu RH (2002) Antioxidant activity of grains. J Agri Food Chem. 50: 6182-6187. [Google Scholar]
  37. Devananad L (2006) Phenolic content of fifteen edible dry beans (Phaseouls vulgaries) varieties. Journal of Food Composition and Analysis 19: 205-211.
  38. Lin LZ, Harnly JM, Pastor-Corrales MS, Luthria DL (2008) The polyphenolic profiles of common bean (Phaseolus vulgaris L.). Food Chem 107: 399-410. [CrossRef] [Google Scholar] [PubMed]
  39. Pierce CG, Uppuluri P, Tristan AR, Wormley FL, Mowat E, et al. (2008) A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nat Protoc 3: 1494-1500. [CrossRef] [Google Scholar] [PubMed]
  40. Sudjana AN, D'Orazio C, Ryan V, Rasool N, Ng J, et al. (2009) Antimicrobial activity of commercial Olea europaea (olive) leaf extract. Int J Antimicrob Agents 33: 461-463. [CrossRef] [Google Scholar] [PubMed]
  41. Romano CS, Abadi K, Repetto V, Vojnov AA, Moreno S, et al. (2009) Synergistic antioxidant and antibacterial activity of rosemary plus butylated derivatives. Food chemistry 115: 456-461. [CrossRef] [Google Scholar]
  42. Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12: 564-582. [CrossRef] [Google Scholar] [PubMed]
  43. White PJ, Xing Y (1997) Antioxidants from Cereals and Legumes. In Natural Antioxidants: Chemistry, Health Effects, and Applications. AOCS Press: Champaign IL. [Google Scholar]
  44. Wegner CJ (2011) Characterizing the Chemoprevention Potential of Amenity Grass Phenolic Extracts In Vitro and the Corresponding Nutraceutical Targets within HepG2 Carcinoma Cells. University of Nebraska-Lincoln. [Google Scholar]
  45. Havsteen B (1983) Flavonoids, a class of natural products of high pharmacological potency. Biochem Pharmacol 32: 1141-1148. [CrossRef] [Google Scholar] [PubMed]
  46. Bylka W, Matlawska I, Pilewsky NA (2004) Natural flavonoids as antimicrobial agents. Journal of the American Nutraceutical Association 7: 24-31. [Google Scholar]
  47. Borges A, Ferreira C, Saavedra MJ, Simões M (2013) Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb Drug Resist 19: 256-265. [CrossRef] [Google Scholar] [PubMed]
  48. Cerca N, Martins S, Pier GB, Oliveira R, Azeredo J, et al. (2005) The relationship between inhibition of bacterial adhesion to a solid surface by sub-mic concentrations of antibiotics and the subsequent development of a biofilm. Res Microbiol 156: 650-655. [CrossRef] [Google Scholar] [PubMed]
  49. Chaudhari NM, Gupta VK, Dutta C (2016) BPGA- an ultra-fast pan-genome analysis pipeline. Sci Rep 6: 24373. [CrossRef] [Google Scholar] [PubMed]
  50. Silva NCC, Fernandes Júnior A (2010) Biological properties of medicinal plants: a review of their antimicrobial activity. J Venom Anim Toxins Trop Dis 16: 402-413. [CrossRef] [Google Scholar]
  51. Barbieri DSV, Tonial F, Lopez PVA, Sales Maia BHLN, Santos GD, et al. (2014) Archoralbio. 59: 887.
  52. Martins N, Barros L, Henriques M, Silva S, Ferreira ICFR, et al. (2015) In vivo anti-candida activity of phenolic extracts and compounds: Future perspectives focusing on effective clinical interventions. Biomed Res Int 2015: 247382. [CrossRef] [Google Scholar] [PubMed]
  53. Jothy SL, Zakariah Z, Chen Y, Sasidharan S (2012) In vitro, in situ and in vivo studies on the anticandidal activity of Cassia fistula seed extract. Molecules 17: 6997-7009. [CrossRef] [Google Scholar] [PubMed]
  54. Campos FM, Couto JA, Figueiredo AR, Tóth IV, Rangel AOSS, et al. (2009) Cell membrane damage induced by phenolic acids on wine lactic acid bacteria. Int J Food Microbiol 135: 144-151. [CrossRef] [Google Scholar] [PubMed]
  55. Walsh SE, Maillard JY, Russell AD, Catrenich CE, Charbonneau DL, et al. (2003) Activity and mechanisms of action of selected biocidal agents on Grampositive and -negative bacteria. Activity and mechanisms of action of selected biocidal agents on Gram-positive and negative bacteria 94: 240-247. [CrossRef] [Google Scholar]
  56. Ultee A, Bennik MHJ, Moezelaar R (2002) The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl Environ Microbiol 68: 1561-1568. [CrossRef] [Google Scholar] [PubMed]
  57. Unio HA, Sy-Cordero AA, Ettefagh KA, Burns JT, Micko KT, et al. (2011) Synergy-directed fractionation of botanical medicines: a case study with goldenseal (Hydrastis canadensis). J Nat Prod 74: 1621-1629. [CrossRef] [Google Scholar] [PubMed]
  58. Spelman K, Duke JA (2006) Bogenschutz-Godwin MJ, In Natural Products from Plants, 2nd ed. Cseke L, Kirakosyan A, Kaufman PB, Warber SL, Duke JA, Brielmann HL, Eds. CRC Taylor and Francis: Boca Raton.
  59. Tafesh A, Najami N, Jadoun J, Halahlih F, Riepl H, et al. (2011) Synergistic antibacterial effects of polyphenolic compounds from olive mill wastewater Evid. Based Complement Alternat Med. [Google Scholar]
  60. Shirley KP, Windsor LJ, Eckert GJ, Gregory RL (2015) In vitro effects of Plantago major extract, aucubin, and baicalein on Candida albicans biofilmf ormation, metabolic activity, and cell surface hydrophobicity. J Prosthodont 26: 508-515. [CrossRef] [Google Scholar] [PubMed]