Profile
International Journal of Clinical Nutrition & Dietetics Volume 6 (2020), Article ID 6: IJCND-149, 7 pages
https://doi.org/10.15344/2456-8171/2020/149
Case Study
Special Issue: Functional Foods and Nutraceuticals: Their Role in Disease Prevention
The Application of Essential Oils in Edible Coating: Case of Study on Two Fresh Cut Products

Valeria Rizzo* and Giuseppe Muratore

Di3A University of Catania, via Santa Sofia 100, 95123 Catania, Italy
Dr. Valeria Rizzo, Di3A University of Catania, via Santa Sofia 100, 95123 Catania, Italy; E-mail: vrizzo@unict.it
19 December 2019; 11 February 2020; 13 February 2020
Rizzo V, Muratore G (2020) The Application of Essential Oils in Edible Coating: Case of Study on Two Fresh Cut Products. Int J Clin Nutr Diet 6: 149. doi: https://doi.org/10.15344/2456-8171/2020/149

References

  1. Guenther E (1948) The Essential Oils. D. Van Nostrand Inc, New York.
  2. Gouveia AR, Alves M, de Almeida JM, Monteiro‐Silva F, González‐Aguilar G, et al. (2017) The antimicrobial effect of essential oils against Listeria monocytogenes in Sous-vide cook‐chill beef during storage. J Food Process Preserv 41: e13066. [CrossRef] [Google Scholar]
  3. Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods. Int J Food Microbiol 94: 223-253. [CrossRef] [Google Scholar] [PubMed]
  4. Lawrence BM (1984) The botanical and chemical aspects of oregano. Perfumer & Flavorist 9: 41-51. [View]
  5. Lens-Lisbonne C, Cremieux A, Maillard C, Balansard G (1987) Methodes d’evaluation de l’activite´ antibacterienne des huiles essentielles: application aux essences de thym et de cannelle. J Pharmacie de Belgique 42: 297-302.
  6. McGimpsey JA, Douglas MH, Van Klink JL, Beauregard DA, Perry NB, et al. (1994) Seasonal variation in essential oil yield and composition from naturalized Thymus vulgaris L in New Zealand. Flavour Frag. J. 9: 347-352. [CrossRef] [Google Scholar]
  7. Prudent D, Perineau F, Bessiere JM, Michel GM, Baccou JC, et al. (1995) Analysis of the essential oil of wild oregano from Martinique (Coleus aromaticus Benth) evaluation of its bacteriostatic and fungistatic properties. J Essent Oil Res 7: 165-173. [CrossRef] [Google Scholar]
  8. Charai M, Mosaddak M, Faid M (1996) Chemical composition and antimicrobial activities of two aromatic plants: Origanum majorana L. and O. compactum Benth. J Essent Oil Res 8: 657-664. [CrossRef] [Google Scholar]
  9. Sivropoulou A, Papanikolaou E, Nikolaou C, Kokkini S, Lanaras T, et al. (1996) Antimicrobial and cytotoxic activities of Origanum essential oils. J Agric Food Chem 44: 1202-1205. [CrossRef] [Google Scholar]
  10. Kokkini S, Karousou R, Dardioti A, Krigas N, Lanaras T, et al. (1997) Autumn essential oils of Greek oregano. Phytochemistry 44: 883-886. [CrossRef] [Google Scholar]
  11. Russo M, Galletti GC, Bocchini P, Carnacini A (1998) Essential oil chemical composition of wild populations of Italian oregano spice (Origanum vulgare ssp. hirtum (Link) Ietswaart): A preliminary evaluation of their use in chemotaxonomy by cluster analysis: 1. Inflorescences. J Agric Food Chem 46: 3741-3746. [CrossRef] [Google Scholar]
  12. Cosentino S, Tuberoso CIG, Pisano B, Satta M, Mascia V, et al. (1999) In vitro antimicrobial activity and chemical composition of Sardinian Thymus essential oils. Lett Appl Microbiol 29: 130-135. [CrossRef] [Google Scholar] [PubMed]
  13. Marino M, Bersani C, Comi G (2001) Impedance measurements to study the antimicrobial activity of essential oils from Lamiacea and Compositae. Int J Food Microbiol 67: 187-195. [CrossRef] [Google Scholar] [PubMed]
  14. Daferera DJ, Ziogas BN, Polissiou MG (2000) GC-MS analysis of essential oils from some Greek aromatic plants and their fungitoxicity on Penicillium digitatum. J Agric Food Chem 48: 2576-2581. [CrossRef] [Google Scholar] [PubMed]
  15. Juliano C, Mattana A, Usai M (2000) Composition and in vitro antimicrobial activity of the essential oil of Thymus herba-barona Loisel growing wild in Sardinia. J Essent Oil Res 12: 516-522. [CrossRef] [Google Scholar]
  16. Bauer K, Garbe D, Surburg H (2001) Common Fragrance and Flavor Materials: Preparation, Properties and Uses. Wiley-VCH, Weinheim.
  17. Demetzos C, Perdetzoglou DK, Tan K (2001) Composition and antimicrobial studies of the oils of Origanum calcaratum Juss. and O. scabrum Boiss. et Heldr. from Greece. J Essent Oil Res 13: 460-462. [CrossRef] [Google Scholar]
  18. Delaquis PJ, Stanich K, Girard B, Mazza G (2002) Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. Int J Food Microbiol 74: 101-109. [CrossRef] [Google Scholar] [PubMed]
  19. Pintore G, Usai M, Bradesi P, Juliano C, Boatto G et al. (2002) Chemical composition and antimicrobial activity of Rosmarinus officinalis L oils from Sardinia and Corsica. Flavour Frag J 17: 15-19. [CrossRef] [Google Scholar]
  20. Rizzo V, Amoroso L, Licciardello F, Mazzaglia A, Muratore G, et al. (2018) The effect of sous vide packaging with rosemary essential oil on storage quality of fresh-cut potato. LWT-Food Sci Technol 94: 111-118. [CrossRef] [Google Scholar]
  21. Rizzo V, Lombardo S, Pandino G, Barbagallo RN, Mazzaglia A, et al. (2019) Shelf life study of ready to cook slices of globe artichoke ‘Spinoso sardo’: effects of anti-browning solutions and edible coating enriched with “Foeniculum vulgare” essential oil. J Sci Food Agric 99: 5219-5228. [CrossRef] [Google Scholar] [PubMed]
  22. Milani MJ, Maleki G (2012) Hydrocolloids in food industry. Food industrial processes methods and equipment. Croatia: InTech publication.
  23. Prakash A, Baskaran R, Paramasivam N, Vadivel V (2018) Essential oil based nanoemulsions to improve the microbial quality of minimally processed fruits and vegetables: A review. Food Res Int 111: 509-523. [CrossRef] [Google Scholar] [PubMed]
  24. Rocculi P, Cocci E, Romani S, Sacchetti G, Dalla Rosa M, et al. (2009) Effect of 1-MCP treatment and N2O MAP on physiological and quality changes of fresh-cut pineapple. Postharvest Biol Technol 51: 371-377. [CrossRef] [Google Scholar]
  25. Ferrari CKB (2004) Functional foods, herbs and nutraceuticals: towards biochemical mechanisms of healthy aging. Biogerontology 5: 275-289. [CrossRef] [Google Scholar] [PubMed]
  26. Andlauer W, Furst P (2002) Nutraceuticals: a piece of history, present status and outlook. Food Res Int 35: 171-176. [CrossRef] [Google Scholar]
  27. Chien PJ, Sheu F, Yang FH (2007) Effects of edible chitosan coating on quality and shelf life of sliced mango fruit. J Food Eng 78: 225-229. [CrossRef] [Google Scholar]
  28. Tapia MS, Rojas-Graü MA, Carmona A, Rodríguez FJ, Soliva-Fortuny R, et al. (2008) Use of alginate- and gellan-based coatings for improving barrier, texture and nutritional properties of fresh-cut papaya. Food Hydrocolloids 22: 1493-1503. [CrossRef] [Google Scholar]
  29. Brasil IM, Gomes C, Puerta-Gomez A, Castell-Perez ME, Moreira RG, et al. (2012) Polysaccharide-based multilayered antimicrobial edible coating enhances quality of fresh-cut papaya. LWT-Food Sci Technol 47: 39-45. [CrossRef] [Google Scholar]
  30. Oms-Oliu G, Soliva-Fortuny R, Martín-Belloso O (2008) Edible coatings with antibrowning agents to maintain sensory quality and antioxidant properties of fresh-cut pears. Postharvest Biol Technol 50: 87-94. [CrossRef] [Google Scholar]
  31. Bico SLS, Raposo MFJ, Morais RMSC, Morais AMMB (2009) Combined effects of chemical dip and/or carrageenan coating and/or controlled atmosphere on quality of fresh-cut banana. Food Control 20: 508-514. [CrossRef] [Google Scholar]
  32. Montero-Calderón M, Rojas-Graü MA, Martín-Belloso O (2008) Effect of packaging conditions on quality and shelf-life of fresh-cut pineapple (Ananas comosus). Postharvest Biol Technol 50: 182-189. [CrossRef] [Google Scholar]
  33. Bierhals VS, Chiumarelli M, Hubinger MD (2011) Effect of cassava starch coating on quality and shelf life of fresh-cut pineapple (Ananas Comosus L Merril cv “Pérola”). J Food Sci 76: 62-72. [CrossRef] [Google Scholar] [PubMed]
  34. Azarakhsh N, Osman A, Ghazali HM, Tan CP, Mohd Adzahan N, et al. (2012) Optimization of alginate and gellan-based edible coating formulations for fresh-cut pineapples. Int Food Res J 19: 279-285. [Google Scholar]
  35. Mantilla N, Castell-Perez ME, Gomes C, Moreira RG (2013) Multilayered antimicrobial edible coating and its effect on quality and shelf-life of fresh-cut pineapple (Ananas comosus). LWT Food Sci Technol 51: 37-43. [CrossRef] [Google Scholar]
  36. Maher ZE, Entsar SA (2013) Chitosan based edible films and coatings: A review. Materials Science and Engineering: C 33: 1819-1841. [CrossRef] [Google Scholar]
  37. Poverenov E, Zaitsev Y, Arnon H, Granit R, Alkalai-Tuvia S, et al. (2014) Effects of a composite chitosan-gelatin edible coating on postharvest quality and storability of red bell peppers. Postharvest Biol Technol 96: 106-109. [CrossRef] [Google Scholar]
  38. Raybaudi-Massilia RM, Mosqueda-Melgar J, Martín-Belloso O (2008) Edible alginate-based coating as carrier of antimicrobials to improve shelf-life and safety of fresh-cut melon. Int J Food Microbiol 121: 313-327. [CrossRef] [Google Scholar] [PubMed]
  39. Azarakhsh N, Osman A, Ghazali HM, Tan CP, Adzahan NM (2014) Lemongrass essential oil incorporated into alginate-based edible coating for shelf-life extension and quality retention of fresh-cut pineapple. Postharvest Biol Technol 88: 1-7. [CrossRef] [Google Scholar]
  40. Gachkar L, Yadegarı D, Rezaeı MB, Taghızadeh M, Astaneh SA, et al. (2007) Chemical and biological characteristics of Cuminum cyminum and Rosmarinus officinalis essential oils. Food Chem 102: 898-904. [CrossRef] [Google Scholar]
  41. Nezhadali A, Nabavı M, Rajabıan M, Akbarpour M, Pouralı P, et al. (2014) Chemical variation of leaf essential oil at different stages of plant growth and in vitro antibacterial activity of Thymus vulgaris Lamiaceae, from Iran. Beni-Suef University Journal of Basic and Applied Sciences 3: 87-92. [CrossRef] [Google Scholar]
  42. Teixeira B, Marques A, Ramos C, Neng NR, Nogueira JM, et al. (2013) Chemical composition and antibacterial and antioxidant properties of commercial essential oils. Ind Crop Prod 43: 587-595. [CrossRef] [Google Scholar]
  43. Azeredo DGA, Stamford TLM, Nunes PC, Neto NJG, De Oliveira MEG, et al. (2011) Combined application of essential oils from Origanum vulgare L. and Rosmarinus officinalis L. to inhibit bacteria and autochthonous microflora associated with minimally processed vegetables. Food Res Int 44: 1541-1548. [CrossRef] [Google Scholar]
  44. Khalil N, Ashour M, Fikry S, Singab AN, Salama O, et al. (2018) Chemical composition and antimicrobial activity of the essential oils of selected Apiaceous fruits. Future J Pharmac Sci 4: 88-92. [CrossRef] [Google Scholar]
  45. Tosun ŞY, Üçok Alakavuk D, Ulusoy Ş, Erkan N (2018) Effects of essential oils on the survival of Salmonella Enteritidis and Listeria monocytogenes on fresh Atlantic salmons (Salmo salar) during storage at 2±1 °C. J Food Safety 38: 12408. [CrossRef] [Google Scholar]
  46. De Medeiros Barbosa I, da Costa Medeiros JA, de Oliveira KÁR, Gomes-Neto NJ, Tavares JF, et al. (2016) Efficacy of the combined application of oregano and rosemary essential oils for the control of Escherichia coli, Listeria monocytogenes and Salmonella Enteritidis in leafy vegetables. Food Contr 59: 468-477. [CrossRef] [Google Scholar]
  47. Ghabraie M, Vu KD, Tata L, Salmieri S, Lacroix M, et al. (2016) Antimicrobial effect of essential oils in combinations against five bacteria and their effect on sensorial quality of ground meat. LWT- Food Sci Technol 66: 332-339. [CrossRef] [Google Scholar]
  48. Pesavento G, Calonico C, Bilia AR, Barnabei M, Calesini F, et al (2015) Antibacterial activity of Oregano, Rosmarinus and Thymus essential oils against Staphylococcus aureus and Listeria monocytogenes in beef meatballs. Food Contr. 54: 188-199. [CrossRef] [Google Scholar]
  49. Mazzarrino G, Paparella A, Chaves-López C, Faberi A, Sergi M, et al (2015) Salmonella enterica and Listeria monocytogenes inactivation dynamics after treatment with selected essential oils. Food Contr 50: 794-803. [CrossRef] [Google Scholar]
  50. Lattanzio V, Kroon PA, Linsalata V, Cardinali A (2009) Globe artichoke: a functional food and source of nutraceutical ingredients. J Functional Foods 1: 131-144. [CrossRef] [Google Scholar]
  51. Lombardo S, Pandino G, Mauromicale G (2017) The effect on tuber quality of an organic versus a conventional cultivation system in the early crop potato. J Food Comp Anal 62: 189-196. [CrossRef] [Google Scholar]
  52. Amoroso L, Rizzo V, Muratore G (2019) Nutritional values of potato slices added with rosemary essential oil cooked in sous vide bags. Int J Gastron Food Sci 15: 1-5. [CrossRef] [Google Scholar]
  53. Artiga-Artigas M, Acevedo-Fani A, Martín-Belloso O (2017) Improving the shelf life of low-fat cut cheese using nanoemulsion-based edible coatings containing oregano essential oil and mandarin fiber. Food Cont 76: 1-12. [CrossRef] [Google Scholar]
  54. Noori S, Zeynali F, Almasi H (2018) Antimicrobial and antioxidant efficiency of nanoemulsion-based edible coating containing ginger (Zingiber officinale) essential oil and its effect on safety and quality attributes of chicken breast fillets. Food Control 84: 312-320. [CrossRef] [Google Scholar]
  55. Azevedo AN, Buarque PR, Cruz EMO, Fitzgerald Blank A, Alves PB, et al (2014) Response surface methodology for optimisation of edible chitosan coating formulations incorporating essential oil against several foodborne pathogenic bacteria. Food Cont 43: 1-9. [CrossRef] [Google Scholar]
  56. Donsì F, Ferrari G (2016) Essential oil nanoemulsions as antimicrobial agents in food. J Biotec 233: 106-120. [CrossRef] [Google Scholar]
  57. Bauer K, Garbe D, Surburg H (2001) Common Fragrance and Flavor Materials: Preparation, Properties and Uses. Wiley-VCH, Weinheim.
  58. Farag RS, Daw ZY, Hewedi FM, El-Baroty GSA (1989) Antimicrobial activity of some Egyptian spice essential oils. J Food Protection 52: 665-667. [CrossRef] [Google Scholar] [PubMed]
  59. Smith-Palmer A, Stewart J, Fyfe L (1998) Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens. Lett Appl Microbiol 26: 118-122. [CrossRef] [Google Scholar] [PubMed]
  60. Hammer KA, Carson CF, Riley TV (1999) Antimicrobial activity of essential oils and other plant extracts. J Appl Microbiol 86: 985-990. [CrossRef] [Google Scholar] [PubMed]
  61. Burt SA, Reinders RD (2003) Antibacterial activity of selected plant essential oils against Escherichia coli O157:H7. Lett Appl Microbiol 36: 162-167. [CrossRef] [Google Scholar] [PubMed]
  62. Chaibi A, Ababouch LH, Belasri K, Boucetta S, Busta FF, et al. (1997) Inhibition of germination and vegetative growth of Bacillus cereus T and Clostridium botulinum 62A spores by essential oils. Food Microbiol. 14: 161-174. [CrossRef] [Google Scholar]
  63. Shelef LA, Jyothi EK, Bulgarelli MA (1984) Growth of enteropathogenic and spoilage bacteria in sage-containing broth and foods. J Food Sci 49: 737-740. [CrossRef] [Google Scholar]
  64. Firouzi R, Azadbakht M, Nabinedjad A (1998) Anti-listerial activity of essential oils of some plants. J Applied Animal Res 14: 75-80. [CrossRef] [Google Scholar]
  65. Azarakhsh N, Osman A, Ghazali HM, Tan Chin P, Adzahan NM, et al. (2014) Lemongrass essential oil incorporated into alginate-based edible coating for shelf life extension and quality retention of fresh-cut pineapple. Postharvest Biol Technol 88: 1-7. [CrossRef] [Google Scholar]
  66. Prakash A, Baskaran R, Vadivel V (2020) Citral nanoemulsion incorporated edible coating to extend the shelf life of fresh cut pineapples. LWT 118: 108851. [CrossRef] [Google Scholar]
  67. Arroyo BJ, Bezerra AC, Oliveira LL, Arroyo SJ, Almeida de Melo E, et al. (2020) Antimicrobial active edible coating of alginate and chitosan add ZnO nanoparticles applied in guavas (Psidium guajava L.). Food Chemistry 309: 125566. [CrossRef] [Google Scholar]
  68. Rezaei F, Shahbazi Y (2018) Shelf-life extension and quality attributes of sauced silver carp fillet: A comparison among direct addition, edible coating and biodegradable film. LWT 87: 122-133. [CrossRef] [Google Scholar]
  69. Zhang W, Shu C, Chen Q, Cao J, Jiang W, et al. (2019) The multi-layer film system improved the release and retention properties of cinnamon essential oil and its application as coating in inhibition to penicillium expansion of apple fruit. Food Chem 299: 125109. [CrossRef] [Google Scholar] [PubMed]
  70. Sarengaowa, Hu W, Feng K, Xiu Z, Jiang A, et al. (2019) Thyme oil alginate-based edible coatings inhibit growth of pathogenic microorganisms spoiling fresh-cut cantaloupe. Food Bioscience 32: 100467. [CrossRef] [Google Scholar]
  71. Guerreiro AC, Gago CML, Faleiro ML, Miguel MGC, Antunes MDC, et al. (2015) Raspberry fresh fruit quality as affected by pectin- and alginate-based edible coatings enriched with essential oils. Scientia Horticulturae 194: 138-146. [CrossRef] [Google Scholar]
  72. Guerreiro AC, Gago CML, Faleiro ML, Miguel MGC, Antunes MDC, et al. (2015) The effect of alginate-based edible coatings enriched with essential oils constituents on Arbutus unedo L. fresh fruit storage. Postharvest Biol Technol 100: 226-233. [CrossRef] [Google Scholar]
  73. Hajji S, Younes I, Affes S, Boufi S, Nasri M, et al. (2018) Optimization of the formulation of chitosan edible coatings supplemented with carotenoproteins and their use for extending strawberries postharvest life. Food Hydrocolloids 83: 375-392. [CrossRef] [Google Scholar]
  74. Istúriz-Zapata MA, Hernández-López M, Correa-Pacheco ZN, Barrera-Necha LL (2020) Quality of cold-stored cucumber as affected by nanostructured coatings of chitosan with cinnamon essential oil and cinnamaldehyde. LWT 123: 109089. [CrossRef] [Google Scholar]
  75. Yu D, Xu Y, Regenstein JM, Xia W, Yang F, et al. (2018) The effects of edible chitosan-based coatings on flavor quality of raw grass carp (Ctenopharyngodon idellus) fillets during refrigerated storage. Food Chem 242: 412-420. [CrossRef] [Google Scholar]
  76. Pabast M, Shariatifar N, Beikzadeh S, Jahed G (2018) Effects of chitosan coatings incorporating with free or nano-encapsulated Satureja plant essential oil on quality characteristics of lamb meat. Food Control 91: 185-192. [CrossRef] [Google Scholar]
  77. Parafati L, Vitale A, Restuccia C, Cirvilleri G (2016) The effect of locust bean gum (LBG)-based edible coatings carrying biocontrol yeasts against Penicillium digitatum and Penicillium italicum causal agents of postharvest decay of mandarin fruit. Food Microbiol 58: 87-94. [CrossRef] [Google Scholar] [PubMed]
  78. Licciardello F, Kharchoufi S, Muratore G, Restuccia C (2018) Effect of edible coating combined with pomegranate peel extract on the quality maintenance of white shrimps (Parapenaeus longirostris) during refrigerated storage. Food Pack Shelf Life 17: 114-119. [CrossRef] [Google Scholar]
  79. Formiga AS, Pinsetta JSJ, Pereira EM, Cordeiro INF, Mattiuz BH, et al. (2019) Use of edible coatings based on hydroxypropyl methylcellulose and beeswax in the conservation of red guava ‘Pedro Sato’. Food Chem 290: 144-151. [CrossRef] [Google Scholar]
  80. Choi WS, Singh S, Lee YS (2016) Characterization of edible film containing essential oils in hydroxypropyl methylcellulose and its effect on quality attributes of ‘Formosa’ plum (Prunus salicina L.). LWT 70: 213-222. [CrossRef] [Google Scholar]
  81. Guimarães JER, de la Fuente B, Pérez-Gago MB, Andradas C, Carbó R, et al. (2019) Antifungal activity of GRAS salts against Lasiodiplodia theobromae in vitro and as ingredients of hydroxypropyl methylcellulose-lipid composite edible coatings to control Diplodia stem-end rot and maintain postharvest quality of citrus fruit. Int J Food Microbiol 301: 9-18. [CrossRef] [Google Scholar] [PubMed]
  82. Grosso AL, Asensio CM, Grosso NR, Nepote V (2020) Increase of walnuts' shelf life using a walnut flour protein-based edible coating. LWT 118: 108712. [CrossRef] [Google Scholar]
  83. Sánchez-González L, Pastor C, Vargas M, Chiralt A, González-Martínez C, et al. (2011) Effect of hydroxypropylmethylcellulose and chitosan coatings with and without bergamot essential oil on quality and safety of cold-stored grapes, Postharvest Biol. Technol 60: 57-63. [CrossRef] [Google Scholar]
  84. Sucheta, Chaturvedi K, Sharma N, Yadav SK (2019) Composite edible coatings from commercial pectin, corn flour and beetroot powder minimize post-harvest decay, reduces ripening and improves sensory liking of tomatoes. Int J Biological Macromolecules 133: 284-293. [CrossRef] [Google Scholar]
  85. Guerreiro AC, Gago CML, Faleiro ML, Miguel MGC, Antunes MDC, et al. (2015) The use of polysaccharide-based edible coatings enriched with essential oils to improve shelf-life of strawberries. Postharvest Biol Technol 110: 51-60. [CrossRef] [Google Scholar]
  86. Guerreiro AC, Gago CML, Faleiro ML, Miguel MGC, Antunes MDC, et al. (2017) The effect of edible coatings on the nutritional quality of ‘Bravo de Esmolfe’ fresh-cut apple through shelf-life. LWT 75: 210-219. [CrossRef] [Google Scholar]