
Abstract

Although the Graphene-Silicon (Gr-Si) based configurations have received extensive attention in 
electronics and optoelectronics, sufficient on/off current ratio Ion / Ioff and new applications are still limited 
by conventional device structures. In this study, we show a new structure of vertical ambipolar barristors 
based on silicon-graphene-h-BN-graphene sandwich structure, which can be effectively modulated by 
the gate voltage for that the graphene is ambipolar. The bottom graphene acts as a gate-tunable “active 
contact” and the top graphene is used as the gate electrode with the help of the hexagonal boron nitride 
(h-BN) as a transparent dielectric layer. Under the influence of the gate voltage, the Gr-Si configuration 
can be flexible modulated with an ON-OFF ratio exceeding 103. Besides, a normal photovoltaic 
properties of the devices has been characterized due to the application of its transparent two-dimensional 
materials. This unconventional Gr-Si configuration has a potential meaning for future electronics and 
optoelectronics based on graphene or other two-dimensional van der Waals heterostructures.

Novel Graphene-Silicon Heterostructure Device with a Gate-Controlled 
Schottky Barrier

Publication History:

Received: November 22, 2017
Accepted: December 27, 2017
Published: December 29, 2017

Keywords:

Graphene, Ambipolar barrister, 
Built-in electric field, Tunable work 
function

Research Article Open Access

Introduction

Graphene, a single carbon atomic layer with a honeycomb 
structure, has received extensive attention due to its superior 
electrical, optical and mechanical properties [1-5]. The visible light 
transmittanceof graphene has been proved to be as high as 97.7% 
with a tiny conductivity of 30Ω/, which is much better than the 
widely used commercial transparent electrodes of indium doped tin 
oxide (ITO, typically 30-80Ω/ with a visible light transmittance of 
90%) [6,7]. Besides, graphene is more readily scalable and has lower 
contact resistance. It thus has developed rapidly and is widely used as 
transparent electrodes for electronics and optoelectronics, including 
rectifier diodes, light emitting diodes (LED), photodetectors, solar 
cells and so on [8-14]. Among these research works, the combination 
of graphene and silicon for optoelectronics has potential significance 
considering that silicon is the main commercial material in 
semiconductor industry [15-17].

For the reason of the work function difference between graphene 
and silicon, the contact of the graphene and silicon results in charge 
transfer, yielding a built-in electric field on the interface. When the light 
irradiates on the device, sunlit silicon absorbs photons and generates 
electron-hole pairs. Thus, the photogenerated carriers are separated 
under the influence of the built-in electric field and respectively 
collected by graphene and silicon, resulting in the generation of 
photocurrent. Following this principle, the graphene-silicon (Gr-Si) 
configuration has made significant progress. Recently, the efficiency 
of the Gr-Si solar cells have been enhanced to 14.5% with the help 
of a colloidal antireflection coating and nitric acid doping graphene 
[18]. Besides, the Gr/Si configuration can also be used to develop 
highly sensitive photodetectors with a photovoltage responsivity 
exceeding 107 V/W [19]. However, thelack of bandgap causes that 
the electrical properties of graphene cannot be effectively regulated 
in the traditional device structure, which limits its wide application in 
electronic devices. Atoms doping is considered as an effective solution 
to the problem but at the expense of reducing physical properties. 
In further research works, graphene was proved to be ambipolar, 
meaning that the major charge-carrier type and density can be easily 
controlled by the electric field [20-26]. Based on this, exploiting 
graphene as a unique “active contact” with tunable work function 
should allow some flexible design of devices. This paper primarily 
focuses on a feasible way to construct tunable Optoelectronic devices 
based on an untraditional Gr-Si configuration.
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In this work, a novel gate-controlled graphene/h-BN/graphene/
Si heterojunction was demonstrated. The device can be dynamically 
and flexibly modulated under the effect of the electric field, and 
tuned as modifiable device, which exhibit disparate electronic and 
photovoltaic properties. This unconventional device structure and 
ambipolar reconfigurable devices characteristics will further expand 
the new applications of graphene structure configuration, and open 
up potential opportunities for future electronic and optoelectronic 
devices [24,27-29].

Methods

Fabrication of graphene/h-BN/graphene/Si Heterostructure 
Devices

The schematic diagram of the device fabrication process is shown 
in Figure 1. Few-layer graphene flakes, h-BN were prepared using 
a mechanical exfoliation method from bulk crystals [30], and all 
the two-dimensional materials were transferred on a transparent 
polydimethylsiloxane (PDMS) film using a 3M Scotch tape. Besides, 
a kind of n-type silicon wafer covered with a 300-nm-thick thermal 
oxide (SiO2) film was used as substrate to complete the device 
structure. Firstly, electron-beam lithography (EBL) was used to define 
Au/Ni (50nm/5nm) electrodes on the cleaned wafer. A 15 um2 area 
silicon square window between the two electrodes was secondly 
etched using a buffered oxide etchant (BOE) etching method under 
the help of EBL. With the help of an optical microscope, a few-layer 
graphene flake was first exfoliated on the prepared substrate. After 
a slight press, the graphene was transferred to the desired position 
due to the affinity difference between the PDMS and Si. The h-BN 
was aligned on the obtained graphene/silicon heterostructure using 
a similar method, and the last piece of graphene followed. Thus the 
graphene/h-BN/graphene/silicon heterostructure was formed.
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Characterization

Keithley 4200-SCS semiconductor analyzer was used to characterize 
the electrical properties of the devices in a probe station with a high 
vacuum of 10-4 Pa. Optoelectronic characteristics were measured 
with a laser of 638 nm in wavelength (LSR638CPD-1W, from Lasever 
Company, Ltd.).

Result and Discussion

The optical microscope image of a Gr/Si device is showed in Figure 
2a, and Figure 2b correspondingly shows a sectional view of the 
window.
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As we can see in the schematic diagram, the bottom graphene was in 
contact with the silicon to form the Gr/Si heterojunction conductive 
channel. The top graphene was used as the back electrode with the 
help of h-BN acting as a dielectric layer.

Figure 3a shows transfer characteristic curves of the Gr-Si FET 
with a bias voltage VDS of ±1 V, respectively. With the gate voltage 
Vgate increases from -5 v to +5 v, the forward current increases rapidly 
while the reverse current increases even more. The current and bias 
voltage characteristics of the Gr/Si device at various fixed Vgate values 
are shown in Figure 3b, which demonstrates that the rectification 
behavior of the heterostructure reduces slowly with the increase of 
Vgate. With the help of the top gate electrode and gate dielectric above 

Figure 1: Schematic diagram of the graphene/n-silicon device fabrication process. (a) The source material of silicon with 300-nm-thick thermal 
oxide film on one sides. (b) Electron-beam lithography (EBL) was used to define Au/Ni electrodes on the Si02 layer. (c) An area of 15 um2 SiO2 was 
totally etched by BOE between the two electrodes. (d) Three pieces of two-dimensional materials (graphene/h-BN/graphene) were transferred on 
the Si window in turn. The first graphene totally covers the exposed Si and contacts with one of the Au/Ni electrode, and h-BN follows. The second 
graphene covers the window and contacts with another electrode. (e) The final Gr/Si device obtained.

Figure 2: (a) Optical micrograph of Gr-Si device. (b) Schematic diagram of the window.
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the graphene, the Schottky barrier (SB) height changes, resulting in 
the change of the injection of the majority carriers from graphene to 
silicon. This electrical phenomenon corresponds to the reason that 
the top gate directly controls the magnitude of the current across the 
Gr/Si heterojunction with the help of its ambipolar characteristics.

The characteristic of the Gr/Si device can be expressed by the diode 
equation:

                                                                                                            (1)
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Where A is the area of the Schottky junction, A* is the effective 
Richardson constant, q is the elementary charge, kB is the Boltzmann 
constant, and T is the temperature. We analyze the electrical properties 
of the device in the reverse bias saturation regime                                   ,
resulting in that the diode current becomes insensitive to Vbias and
                           . The schematic band diagrams of the Gr/Si heterojunction 
on negative gate voltage (Figure 3c) and Positive gate voltage (Figure 
3d) are used to analyze the internal charges change process. When 
the back voltage Vgate is on negative gate voltage, extra positive 
charges generate and the fermi level of graphene drops, leading to a 
higher barrier height. When Vgate is on positive gate voltage, extra 
negative charges generate and the majority carriers from graphene to 
silicon increase, which is the main reason of the phenomenon that the 
reverse current increases rapidly in reverse bias.

Figure 3: (a) Transfer characteristic curves of the Gr/n-Si heterojunction device (Gr as drain) with VDS of ±1 V. (b) The current and bias voltage 
characteristics of the Gr/Si heterojunction at various fixed Vgate values, Vgate varies in the range of -5 V to 5 V, with a step size of 1 V for each curve. The 
blue arrow indicates the direction of increasing Vgate. (c and d) Schematic band diagrams of the heterojunction with the electric field effect generated 
by the gate on the top of graphene.
(c)Negative gate voltage. (d) Positive gate voltage.

Figure 4. (a) The SB height as a function of Vgate. (b) Open-circuit voltage VOC as a function of the Vgate.
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To further analyze the internal changes of the Gr-Si devices, 
we quantitatively calculate the barrier height of the Gr/Silicon 
heterojunction at different gate voltages. The forward current through 
a Schottky junction follows the thermionic emission model, which 
can be represented by [31]:

                                                                                                    (2)

Where Is is the reverse saturation current, e is the electronic charge, 
VD is the bias voltage across the Schottky junction, n is the ideality 
factor, k is the Boltzmann constant, T is the absolute temperature, and 
Rs is the series resistance. Besides, Is can also be represented by:

                                                                                                       (3)

Where Aeff is the effective area of Schottky junction, A** is the 
Richardson constant, and ΦB is the Schottky barrier height. The 
two equations mentioned above can also determine the relationship 
between current, voltage and the barrier height of the Gr-Si 
heterostructure. By analyzing the dark-state voltage-current data in 
different gate voltage, the barrier height as a function of Vgate is shown 
in Figure 4a, which indicates that the ΦB decreases rapidly with the 
increase of Vgate.

Figure 4b plots open circuit voltage Voc as a function of the gate 
voltage Vgate. The Voc is generally decreasing with the increasing Vgate 
in the range of -5 V - 5V, which is just corresponding to the analysis of 
the Schematic band diagram.

The development of Gr-Si heterostructures for semiconductor 
optoelectronic devices is of great significance. Considering that, 
we also characterized photovoltaic properties of the Gr-Si device 
in our experiments. Figure 5a shows Ids–Vds curves of the Gr–Si 
heterostructure under light illumination (a laser of 638 nm) with the 
gate fixed at 0. The results demonstrate that the Ids–Vds curve keeps 
on shifting upward with the laser power (Plaser ) increasing, which 
is operated as a typical diode and exhibits an obvious photovoltaic 
response. With a laser power of 627 nW, the generated open-circuit 
voltage (VOC) and short-circuit current (ISC) are 0.09 V and 50 nA,
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respectively. Figure 5b shows the Ids–Vds characteristic curves of 
the device under light illumination with different gate voltage, 
which indicates that the gate voltage had an obvious impact on the 
photovoltaic response of the Gr-Si device [32].

Conclusions

In conclusion, an outstanding vertical stacked optoelectronic 
device based on a graphene/h-BN/graphene/Si heterostructure has 
been realized and this gate-controlled device can be dynamically and 
flexibly modulated under the effect of the electric field with a high on/
off ratio of ~1.56x103, which can be improved with well-developed 
semiconductor processes because there is not a fundamental (or 
structural) limit. The study should facilitate the development of the 
Gr-Si device and expand the applications of graphene and other two-
dimensional materials [33,34].
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