
Abstract

Aluminum alloys are attractive for critical applications such as pistons, clutch housings and liners 
in automotive industry for their high strength to weight ratio, high corrosion resistance and good heat 
conductivity. These alloys can be fabricated using casting and powder metallurgy techniques in which 
porosity is a common feature. The presences of pores adversely affect the mechanical properties and wear 
resistance of these components. Not only the total area percentage of porosity influences the degradation 
in properties but also size, shape and interconnectivity of pores play an important role. In this study, 
aluminum alloys were produced using powder metallurgy technique. The amount of porosity was varied 
by varying compaction pressure and amount of wax added before compaction. Reciprocating wear tests 
(ball-on-flat configuration) were performed against AISI 52100 bearing steel ball under both low (1.5-
5N) and high (6-20N) loads. Scanning electron microscopy was employed in order to identify possible 
wear mechanisms. Both detrimental and beneficial effects of porosity under different loading conditions 
were observed. An attempt has been made to develop a relationship between pore size and distribution 
and wear behavior of aluminum alloys.
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Introduction

Aluminum alloys are widely used in a variety of applications, 
including automotive, aerospace, air-conditioning equipment and 
home electrical appliances due to their high strength to weight ratio, 
high elastic modulus and good impact resistance [1-11]. However, low 
wear resistance compared to other materials (i.e. steels and ceramics), 
limits their use. The wear resistance of aluminum alloys depends 
on a number of microstructural parameters such as size, shape, 
natureand distribution of micro-constituents (porosity and second 
phase particles). The microstructural parameters are, to large extent, 
controlled by the particular manufacturing process employed [12-14].

Porosity is a common feature in all processing methods of Al alloys 
and strongly influences their properties and applications. It is a serious 
microstructural defect and has a negative impact on the mechanical 
properties of the alloy. The influence of porosity on the wear behavior 
of materials has been found to be rather complex and has not been 
clearly identified. It is pertinent to note that both beneficial and 
detrimental effects of porosity on wear resistance have been reported 
in the literature [15-17]. Chen et al. [18] investigated the influence of 
porosity on composite materials and suggested that porosity may help 
to absorb the impact energy that accompanies crack splitting. Simchi 
and Danninger [19] showed that porosity acts as lubricant reservoirs 
in wet sliding conditions, which provides a considerable advantage in 
wear process.

However, in general, the presence of porosity is accompanied by a 
decrease in mechanical properties, i.e., drop in strength and ductility 
of materials [20-32]. Hardin and Beckermann [33] demonstrated 
an apparent reduction in elastic moduli of components due to the 
presence of pores. Increase in porosity also decreases the fatigue 
strengths, hardness, facture toughness and elongation (%). Porosity 
appears to impact the process not merely by softening the material 
alone but also by promoting subsurface cracking and delamination. 
The emergence of stress concentrations around pores depend on pore 
size, shape and orientation, and leads to accelerated wear.Pores act 
as pre-existing incipient crack in the subsurface layer and becomes 
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unstable at an appropriate stress level [34].The effect of pores on crack 
initiation and propagation under cyclic loading was investigated by 
many researchers. Suh [35] observed that an increase in porosity 
content reduces the required length of cracks needed to link up pores 
which promotes delamination. Gui et al. [36] considered the pores as 
crack sources which can be created when an external force is applied. 
At high porosity, materials have more interconnected pores, lower 
strength, and are much easier to deform and to be torn off. A decrease 
in pore density results in enhanced wear resistance since pores act 
as stress raisers and thus increase the probability of cracking and 
fracture. However, from fracture behavior point of view, pore size is 
more critical than the overall porosity content [25,26].

In addition, pore size is also important in terms of entrapping wear 
debris. In the case of specimens with low porosity and small mean 
pore size, the capture of debris by pores is difficult. Here, pores may be 
partially or completely closed by plastic deformation, decreasing the 
probability of pore filling by wear debris. In contrast, for high porosity 
levels and larger mean pore sizes, plastic deformation results in filling 
the pores with metallic particles. According to Dubrujeaud [17], the 
filling of pores with wear debris enhances wear resistance of materials 
by reinforcing the porous material. On the other hand, Deshpande 
and Lin [37] reported that porosity decreases wear resistance of 
material as a result of the no-load bearing characteristics of pores on 
the wear surface. Porosity increases surface roughness of materials, 
decreases the real area of contact between two sliding surfaces and 
consequently increases the contact pressure which promotes material 
removal during sliding [38].

 In this study, in order to examine the effect of porosity on wear
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behavior of aluminum alloys, two manufacturing processes were 
employed to induce various pore sizes, shapes, distributions and 
amounts. Cold isostatic pressing and uniaxial compression were used, 
where the amount of porosity was varied by varying the amount of 
lubricant and compressive stress, respectively. Different manufacturing 
processes results in different amount, size and distribution of pores. 
Al 6061 and Al-6% Si were used in cold isostatic pressing and uniaxial 
compression, respectively. Reciprocating wear tests were performed at 
low and high normal loads in order to investigate the effect of normal 
load on wear. A relationship has been developed between pore size 
and distribution and wear behavior of aluminum alloys.

Experimental

Aluminum alloys were prepared using uniaxial compression and 
cold isostatic pressing (CIP). Al 6061and Al-6%Si alloys particle sizes 
are 71 µm and 55 µm respectively. During cold isostatic pressing, a 
total of 0%, 1.5%, 10.5% and 14.5% lubricant (Lico wax C) were added 
to the Al 6061 powder (97.5wt.% Al, 1wt.% Mg, 0.6wt.% Si, 0.5wt.% 
Fe, 0.1wt% Cu, 0.2wt.% Zn, 0.1 wt.% Mn) and blended in a Turbula 
Model T2M mixer for 40 minutes to ensure homogeneity. Rubber 
molds were filled with the blended powders andsealed with electrical 
tape. The sealed molds were then transferred to cold isostatic press 
(CIP) chamber. The chamber was filled with a mixture of water and 
water soluble oil (20:1). The pressure within the pressure chamber 
was increased to 200MPa by using a high pressure air-operated piston 
type pumpand maintained for a dwell time of 5 minutes. Using the 
decompression valve, the pressure was then reduced at a rate of 6.89 
MPa.

During uniaxial compression, two powders (i.e., Al–Si and Al–Mg 
master alloys), were mixed to produce Al-6% Si alloy having following 
alloy composition; 88.8 wt.% Al, 6.0 wt.% Si, 4.5 wt.% Cu, 0.5 wt.% 
Zn and 0.2 wt.% Fe. A total of 1.5% Lico wax C was used as a pressing 
lubricant. Specimens were pressed at 100, 200 and 600 MPa and then 
sintered. Some of the specimens compacted at 600 MPa and sintered 
were swaged to reduce the amount of porosity further.All specimens 
(Al 6061 and Al-6% Si) were sintered in a tube furnace at 560ºC for 
20 minutes and then slow cooled to 480ºC. Basic properties of the two 
alloys are given in Table 1.

Dry reciprocating wear tests were performed using a Universal 
Micro-Tribometer. This test method utilizes a ball upper specimen 
that slides against a flat lower specimen in a linear, back and forth 
sliding motion having a stroke length of 5.03 mm. All tests were 
conducted at room temperature and at a relative humidity of 40–55 %. 
The load is applied downward through the ball counter-face against a 
flat specimen mounted on a reciprocating drive. The tester allows for 

monitoring the dynamic normal load and friction force during the 
test. A 6.3 mm diameter AISI 52100 bearing steel ball with a hardness 
of HRA 83 was used as a counter-face material. The ball was mounted 
inside a ball holder, which is attached directly to a suspension system.
The suspension system is attached to a load sensor that controls 
and records forces during the test. The weight of the specimen was 
measured before and after each wear test to determine individual 
weight loss at selected time intervals. The operating conditions for 
reciprocating wear tests are given in Table 2. Specimens were cross-
sectioned in order to observe the sub-surface of the wear track. 
Scanning electron microscopy was employed to identify possible wear 
mechanisms.

Results and Discussion

Effect of lubricant content and compaction pressure on porosity

The size, shape, distribution and amount of pores in compacts are 
largely dependent on involved processing parameters, i.e. amount of 
lubricant and compaction pressure. For cold isostatic pressed (CIPed) 
specimens, surface porosity was varied by varying the amount of 
lubricant. Figure 1 shows the microstructures of CIPed specimens, 
where specimens were compacted and sintered under the same 
conditions and the amount of lubricant determines pore size, shape 
and amount. The surface porosity ranges from 3.5% to 20.7% for 
0% lubricant to 14.5% lubricant, respectively. With increasing the 
lubricant content from 0% to 14.5%, not only the amount of porosity, 
but also pore size increased from 12µm to 33µm, while, the shape of 
pores changes from circular to irregular. However, the size and shape 
of aluminum grains remain constant. Aluminum grain size, pore size, 
volume and surface porosity for all lubricant contents are tabulated 
in Table 3.
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Al 6061 Green 
density 
(g/cc)

Sintered 
density 
(g/cc)

       Al-6%Si Green 
density 
(g/cc)

 
Sintered 
density 
(g/cc)

0% wax 2.49 2.52 Pressed at 100 
MPa

2.11 2.33

1.5% wax 2.24 2.32 Pressed at 200 
MPa

2.29 2.46

10.5% wax 1.75 1.86 Pressed at 600 
MPa

2.58 2.6

14.5% wax 1.48 1.57 Pressed at 
600MPa and 
swaged

2.58 2.74

Table 1: Basic properties of Al 6061 and Al-6% Sialloy.

Test condition Al 6061 Al-6%Si

Lubricant None None

Temperature Ambient Ambient

Pressure 1 atm 1 atm

Relative humidity 40-55% 40-55%

Stroke length 5.03 mm 5.03 mm

Load 1.5,2,2.5,3,4,5N 6,10,15,20N
Table 2: Operating conditions for reciprocating wear test.

Specimen Wax (%) Al grain 
size (µm)

Poresize
(µm)

Volume    
porosity 
(%)

Surface
porosity 
(%)

Al 6061 0 45.6 12.0 6.5 3.5

1.5 46.1 20.0 13.8 10.3

10.5 45.3 28.0 30.9 16.0

14.5 45.7 33.0 41.7 20.7

Al-6%Si      Compaction
Pressure

Al grain 
size (µm)

Pore size 
(µm)

Volume    
porosity 
(%)

Surface
porosity 
(%)

100 MPa 89.2 82.4 15.67 6.7

200 MPa 99.6 70.2 10.50 4.2

600 MPa 84.2 46.9 5.52 2.3

Swaged 34.8 8.4 0.98 1
Table 3: Microstructural characteristics ofAl 6061 andAl-6%Si.
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Figure1: Optical micrograph of Al 6061 samples with (a) 0% wax, (b) 1.5% wax, (c) 10.5% wax and (d) 14.5% wax content.

Figure 2: Optical micrograph of Al-6%Si pressed at (a) 100 MPa, (b) 200 MPa, (c) 600 MPa and (d) compacted at 600MPa and swaged.
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For Al-6%Si alloy, both volume and surface porosity decrease 
with increasing compaction pressure (Figure 2). The volume percent 
porosity ranges from 5.52% for a 600MPa specimen to 15.67% for the 
100MPa specimen, while surface porosities range from 2.3% to 6.7% 
for the same specimens, respectively. Higher compaction pressure 
leads to greater uniformity, lower porosity and enhanced density of 
the alloy.Al and Si grain sizes remain constant for 100MPa, 200MPa 
and 600MPa compaction pressure. Although the pores have irregular 
shape at low compaction pressure, they are uniformly distributed 
throughout the specimen.With increasing compaction pressure, pore 
shape changes from large irregular to a small round shape. However, 
the swaged specimens (Figure 2d) exhibit finer matrix and smaller 
Si particles. Table 3 shows the Al grain size, pore size, volume and 
surface porosity for all compacted specimens.

Figure 3 represents pore size for different lubricant content and 
compaction pressure. A linear increase in pore size was observed with 
increasing lubricant content. Here, the lubricant acts as a binding agent 
during the compaction process and goes in between the aluminum 
grains. During sintering, the lubricant burns off leaving behind 
pores in the material. Hence, higher amount of lubricant results in 
higher porosity and larger pore size. On the other hand, the pore size 
decreases with increasing the compaction pressure. Among all the 
specimens (both CIPed and uniaxially compacted), the largest pore 
size (82.4 µm) was observed at 100 MPa compaction pressure and the 
smallest pore size (8.4 µm) was observed for the swaged specimen.

It is interesting to note that, there is around 6.4 fold increase in 
volume percent porosity with increasing the amount of lubricant to 
14.5%, while only 2.75 fold increase in pore size was observed for 
same condition. Furthermore, there is around 15.9 fold decrease in 
volume and 9.8 fold decrease in pore size was observed for 100 MPa 
compacted specimen compared to swaged specimen. Specimens 
prepared through cold isostatic pressing have shown large range of 
porosity (in terms of volume and surface), hence, is used here to study 
the effect of pore distribution on wear resistance, while specimens 
prepared through uniaxial compression show larger range of pore size 
and it is used to study the effect of pore size on wear behavior.

Effect of porosity on hardness

In order to investigate the effect of porosity on the hardness of these 
alloys, a series of Rockwell hardness measurements were conducted.
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Figure 4 exhibits the variation of hardness with surface porosity for both Al 
6061 and Al-6%Si specimens. The Rockwell hardness of Al 6061  containing 
3.5%, 10.3%, 16.0% and 20.7% surface porosity are around 84, 67, 23 and 8 
HRH, respectively. Here, 90% reduction in hardness is observed as porosity 
increases from 3.5% to 20.7%. This trend is in agreement with previous work 
[39].This is because, with increasing porosity, load bearing area decreases. 
Moreover, increased porosity in the subsurface raises the chances for crack 
nucleation and link-up of pores. This results in weakening of the materials and 
decreases strength.

Similarly, the hardness of Al-6%Si alloy doubles (Figure 4) as the surface 
porosity drops from 6.7% to 1%. The variation of hardness with porosity is 
expected to have a major impact on wear resistance.

Wear behavior

Specimens containing different amounts of surface porosity were 
subjected to reciprocating wear tests. Figure 5 represents the weight 
loss vs sliding distance for CIPed specimens (Al 6061) containing 
3.5% porosity. The plot reveals a somewhat linear increase in weight 
loss with sliding distance. Moreover, at any given sliding distance, 
weight loss increases with applied load. Similar trend is also observed 
for other conditions, which is in agreement with other researchers 
[40-52]. The wear rate was calculated from the slope of the weight loss 
versus sliding distance. In order to investigate the effect of porosity 
on wear resistance, wear rates of CIPed specimens (containing 3.5%, 
10.3%, 16.0% and 20.7% surface porosity) are plotted as a function 
of normal load and surface porosity (Figure 6). It is evident from the 
figure that the wear rate increases with increasing surface porosity for 
all loading conditions. For example, at 2.5 N loads, there is around 2.5 
fold increase in wear rate when surface porosity increased from 3.5% to 
20.7%. Similar results (increase in wear rate with increasing porosity) 
were reported by other researchers [53,54]. Again, wear rate of the 
specimens increases with increasing normal load. There is around 
2, 2.5, 2.2, and 1.5 fold increase in wear rate with increasing normal 
load from 1.5 N to 5 N for 3.5%, 10.3%, 16.0% and 20.7% surface 
porosity, respectively. This is because of the fact that, pores act as crack 
initiation site during wear. At low normal load, the pores beneath 
the worn surface remain stable due to small amount of subsurface 
deformation and strain. With increasing normal load, stress intensity 
increases. Pores beneath the worn surface become unstable and cracks 
originated from these pores can propagate significantly.

Figure 3: Dependence of average pore size on lubricant content and 
compaction pressure.

Figure 4: Variation in hardness with porosity content.
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As compaction pressure is decreased, % porosity increases which 
leads to lower hardness.The pore size increases and becomes more 
irregular in shape, consequently, wear rate increases (Figure 7). The 
increase in porosity resultsin more material removal by covering 
of pores and pore edge fracturing. Moreover, the chances of crack 
nucleation, and link-up of pores is increased with increasing porosity 
in the subsurface.Besides, the irregular shape of pores and increased 
pore sizes lead to higher probability of crack nucleation. As contact 
pressure is increased with increasing % porosity, wear rate drops. 
The increase in contact pressure is due to a pore-enhanced-surface-
roughness of the specimens, which reduces the area of contact 
between the sliding pair. However, as % porosity increases over 
4% due to lower compaction pressure, larger pores are formed and 
hardness drops; although, wear resistance increases (Figure 7). The 
effect of porosity on wear rate is not only due to softening but also 
pore size and when the pore size exceeds the contact area between the 
specimen and counter-face, wear rate drops. Hertzian contact analysis 
is carried out to identify possible factors which contribute to the wear 
rate of aluminum alloys. Based on the Hertzian theory, the contact 
radius ‘a’ can be determined from [55],
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where W is the total load on the contact spot and R is the effective 
radius which relates to the radius of the individual components by,

In the present work, all the samples are flat, which makes R2 = ∞ 
and R = R1. E* is the effective modulus of elasticity:

E1=210 GPa and E2=90 GPa for the AISI 52100 steel ball and the 
Al-Si specimen, respectively. Here, v1 and v2 (both = 0.3) are Poisson’s 
ratio of the specimen and the counter-face. For the low and the 
high loads of 6 N and 20 N, the contact radius is 0.05 and 0.08 mm, 
respectively. Hence, from the above analysis, the contact diameter in 
this load range varies from 0.10 to 0.16 mm which is in the same order 
of magnitude as the average pore size for the 100 MPa pressed and 
sintered specimen (pore size about 0.12 mm). This indicates that, the 
ball slides into the pore itself, which removes the contribution of pore 
covering and subsequent fracturing to material removal and wear 
occurs only by delamination. This eventually leads to lower wear.

Wear mechanisms

Worn surfaces were examined by using SEM to identify possible 
wear mechanisms. Abrasion, ploughing, delamination and heavy 
surface deformation and fracture are the dominant wear mechanisms 
during the wear process. Based on experimental observation, several 
factors are identified that affect the wear resistance of Al alloy, namely, 
the amount of porosity, pore size and shape.

Figure 8a shows heavy surface damage due to abrasion in the form 
of longitudinal grooves extending parallel to the sliding direction. This 
process of material removal from the surface via plastic deformation is 
known as ploughing [56-57]. During ploughing, material is deformed 
plastically, resulting in deepening and widening of wear tracks [58]. A 
series of grooves are formed due to the displacement of Al and ridges 
form along the sides of the ploughed grooves. These ridges become

Figure 5: Weight loss vs. sliding distance curve for Al 6061 (3.5% 
porosity).

Figure 6: Variation of wear rate with normal load surface porosity for Al 
6061.

Figure 7: Variation of wear rate with normal load surface porosity for 
Al-6% Si.
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Figure 8: SEM micrograph of aluminum alloy, (a) formation of grooves due to ploughing, (b) optical micrograph of the cross-section of wear track 
shows pore covering by deformed material, (c) entrapments of wear debris inside a pore, (d) crack initiation near a pore, (e) crack propagation, (f) cross 
section of the wear track illustrating delamination, (g) cross section of the wear track showing the propagation of sub-surface crack due to the presence 
of porosity and (h) Hertzian-type cracks developed due to surface tensile stress.
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flattened and eventually fracture after repeated loading and unloading 
cycles. Figure 8b is an optical micrograph of 600 MPa pressed and 
sintered Al-Si specimen at the end of the reciprocating wear test. 
The image represents a transverse cross section of the wear track 
(along the wear track). The figure shows material extending and 
partially covering pore cavity with a thin layer of deformed metal. 
The formation of the extruded metal over the pores occurs as a result 
of asperities ploughing through the surface and dragging material 
ahead of the slider. The extended material fractures and forms wear 
debris during subsequent passes of the slider. In some cases, some of 
the debris was entrapped into the pores (Figure 8c) and some were 
remained on top of the sliding surfaces causes three body abrasion. 
Again, as pores act as stress concentration areas they tend to fracture 
with the reciprocating motion of the slider. This is evident from the 
cracks extending from pore edges in Figure8d. Figure 8e shows a 
magnified image illustrating the crack initiation and propagation due 
to the reciprocation motion, where the pore is covered by the wear 
fragment.

Another mechanism which contributes to the observed wear is 
delamination. Delamination wear occurs as a result of subsurface 
cracks nucleation near pores (as they act as stress concentration 
regions) and propagation of these cracks (Figure 8f). There is a critical 
crack length beyond which it becomes unstable and propagates to the 
surface generating wear debris. Networks of cracks are created by 
connecting different subsurface pores (Figure 8g). Pores serve as the 
origin of crack generation and the end of crack propagation, hence, 
reducing the required length for crack propagation. Other wear 
features have been identified in all specimens are Hertzian cracks 
perpendicular to the sliding direction (Figure 8h). These cracks 
develop as a result of surface tensile stresses that develop during 
Hertzian contact.

The effect of porosity on wear resistance depends not only on the 
total porosity content, but also on pore distribution and connectivity 
of the pores. Figure 9 shows a schematic diagram illustrating the effect 
of pore distribution on wear. When the amount of porosity is small 
and pores are non-uniformly distributed (Figure 9a), it is difficult for 
the nucleated crack to propagate and connect with the adjacent pores. 
However, with increasing the amount of porosity and uniformly 
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distributed pores, cracks can propagate at higher rate as pores can 
easily link up with each other and form a large network of cracks. 
This is because, the distance cracks needed to travel before meeting 
another pore is shorter, which significantly increases wear rate.

Figure 10 is a schematic diagram which depicts the effect of pore 
size on wear mechanisms. Figure 10(a-c) represents the covering of 
a small pore by extruded material ahead of the sliding counter-face 
and subsequent fracturing due to the further passes of the slider. 
Figure 10(d-f) illustrates the counter-face sliding inside a large pore, 
where the pore size and the contact area are within the same order 
of magnitude. This model further explains the drop in wear rate at 
both high porosity and large pore size for Al-6% Si. Dubrujeaud et al. 
[17] reached at similar conclusions that high porosity and large pore 
size have a beneficial effect on wear rate. However, they concluded 
that the drop in wear rate at high porosity content is attributed to the 
entrapment of wear debris in large pores.

 

Figure 9: Schematic diagram depicting the effect of (a) non-uniform and (b) uniform pore distribution on wear.

Figure 10: Schematic diagram depicting wear mechanisms observed for 
small and large pores.
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Conclusion

In this study tribological behavior of Al alloys has been investigated. 
Specimens were prepared using cold isostatic pressing and uniaxial 
compression. The following main conclusions have emerged:

1. There is an inverse relationship exists between the hardness and 
porosity content of Al alloys. Significant decrease in hardness was 
observed with an increase in surface porosity.

2. Wear rate of aluminum alloys increases with increasing normal load 
due to high contact pressure and heavy plastic deformation. Above a 
threshold normal load, porosity in the sub-surface region acts as a 
crack initiation site and promotes delamination.

3. The amount of porosity, distribution, size and shape of the pores 
has a great impact on material removal during wear. In general, the 
wear rate of Al alloy decreases with increasing porosity and for a given 
amount of porosity, uniform pore distribution results in accelerated 
wear.

4. Below a certain critical pore size, wear occurs by two mechanisms: 
(i) partial covering of pores with a thin layer of deformed material and 
break-up on subsequent passes of the slider; (ii) nucleation of cracks 
at subsurface pores and connecting to other pores, this ultimately lead 
to delamination of wear particles.

5. When pore size is in the same order of magnitude as the contact 
area between the counter-face and the specimen, the counter-face 
slides in to the pores, hence, pores become less effective in generating 
wear debris.

6. Abrasion, ploughing, delamination, heavy surface deformation and 
fracture are identified as the operative wear mechanisms during the 
wear process.
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