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Introduction

Most nowadays systems are software-intensive, i.e. systems for which 
software is a major technical challenge and is perhaps the major factor 
that affects system schedule, cost, and risk ‎[1].  As systems become 
more complex and distributed, the challenge of architectural design is 
increasing, since it requires the consolidation of many requirements 
and attributes. There are many definitions for the term software 
architecture, but all of them agree that the architecture is the heart 
of every system, determining its structural and behavioral principles, 
directing and constraining following design and implementation 
stages. It is also well perceived that architectural changes to a system, 
in later development stages, are the most difficult. Therefore, software 
architectural design is critical to the entire system's life-cycle.

A software architecture is designed on the basis of requirement 
specifications, which are supposed to define the capabilities and 
properties that the system should possess, both functional and 
non-functional. Requirement specifications, however, tend to focus 
mainly on the system functionality, whereas quality attributes are, 
in many cases, expressed in general terms, and sometimes even 
being overlooked. Moreover, it is a common practice to define the 
set of functional requirements as dynamic scenarios, e.g. use cases 
or user stories, whereas its quality attributes (the non-functional 
requirements) are defined in static terms, requiring the system to be 
safe, secure, available, etc. On the other hand, the impact of quality 
attributes on the architecture is much greater than the functional 
requirements. For example, all the cars in the world have the same 
functionality: carrying a group of people from one location to another. 
Cars, however, differ by the way they are architected, e.g. the engine 
technology (fuel, electricity or hybrid), the transmission (manual or 
automatic), the materials (metal, plastics, etc.), the internal space, 
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comfort, aerodynamic design and more. These are selected according 
to the quality attributes expected from the car, such as performance, 
safety, usability, availability, cost of operation, etc. Considering quality 
attributes during the architectural design process and incorporating 
them into the architecture can improve significantly the quality of the 
constructed architecture and to increase stakeholders' satisfaction.

In this paper, we introduce a two-phase systematic approach to 
software-intensive architecture design, which incorporates both 
functional requirements and quality attributes (i.e. non-functional 
requirements) into a functional architecture which satisfies both. In 
the first stage we show how to systematically derive all the views of an 
initial functional architecture from the defined functional scenarios. 
In the second phase we revisit the functional scenarios, but now as 
"Devil's Advocates"1, investigating cases where the functional scenario 
may fail according to an undesired event. These events are directly 
related to the violation of quality attributes, such as performance, 
availability, security, safety, etc.
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Abstract

Software architecture design is intended to propose a software-intensive architectural solution for a 
required system. As such, the architecture needs to address all the required functionality while satisfying 
all the required quality attributes, which are usually referred to as the non-functional requirements. 
Therefore, a major concern of the software architecture is its behavior, besides its structure. Software-
intensive system specifications tend to be functional in nature, focusing on its behavior, i.e. what is 
expected to be done by the system, whereas quality attributes, which usually describe other properties 
of the system (e.g. performance, availability, safety, etc.) are, in many cases, described in general terms, 
and sometimes even being overlooked. The immediate result is that the software architecture, both 
behavioral and structural, fails to address quality issues - whose absence is discovered only in late stages 
of system verification, validation or operation.

This paper introduces a two-phase process by which a software-intensive architecture is constructed, 
satisfying both functional and non-functional requirements. In the first phase an initial architecture is 
constructed, comprising its physical, functional, combined and behavioral views. In the second phase 
a systematic approach is introduced to discover overlooked quality attributes of a system which might 
be violated during its operational (functional) scenarios. In this approach, quality attributes play the 
role of "devil's advocates", challenging the functionality by suggesting what can go wrong while the 
system performs its functional scenarios. Such challenges yield two results: (1) new "quality scenarios", 
which describe how the system should behave in order to prohibit a fault from causing a failure, and (2) 
modifications to the entire architecture needed to support the newly-derived functionality.

1In common parlance, the term devil's advocate describes someone who, given a certain 
point of view, takes a position he or she does not necessarily agree with (or simply an 
alternative position from the accepted norm), for the sake of debate or to explore the 
thought further [Wikipedia].
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Our approach is based upon the fact that run-time quality attributes 
(i.e. those who may be violated during system operation) occur only 
while it is active performing its tasks. More specifically, while the 
system is running, something happens (e.g. a server crashes or an 
intruder is identified), which might cause the system to fail (i.e. not 
being able to accomplish its task as required). Therefore, such an event 
causes deviation from the normal functional scenario. The role of 
software/system architects is to propose both structural and behavioral 
solutions by which such events may be identified and reacted-upon, in 
order to prohibit the fault (the undesired event) from causing a failure 
(of the entire task). When the system's functionality is challenged by 
possible faults, the designers have to react by designing an appropriate 
reaction, which will attempt to get the system back on tracks. The 
proposed reactions yield two results: (1) new quality scenarios, which 
describe the reaction (i.e. how should the system behave in such 
cases), and (2) modifications to the structural architecture needed to 
support the newly-derived functionality.

In order to explain better and demonstrate our architectural design 
process, we are introducing a case study of a Car Navigation System, 
using UML (the Unified Modeling Language)2 as the modeling 
language for the various views of the architecture. We assume that the 
reader is generally familiar with UML, and therefore provided only 
brief explanations about the features of the language, when applicable. 
The UML diagrams in the various figures have been edited using the 
Enterprise Architect software tool (by Sparx Systems3), version 12.1.

The Car Navigation System Case Study

Before we start the introduction and discussion of our proposed 
approach and process, we would like to introduce a case study of a 
typical popular Car Navigation System (abbreviated CNS).

A CNS is a computerized assistance tool which enables the driver to 
navigate along a chosen route from one location to another. A typical 
business in which such a system might be installed is a driver with a 
car, who usually uses it to apply three main business scenarios:

Planning a trip: determining an origin location and a destination 
location and setting up priorities and constrains (e.g. only toll-free 
routes);

Navigating along a route: displaying dynamically the route and the 
car location on the relevant map section and continuously checking 
the relation between the actual and the expected location of the car. 
When a significant deviation is indicated, an alternative route is 
proposed;

Launching a traffic report: creating and reporting an event, an 
obstacle or any other entity (e.g. police), by the driver. Such reports 
may be distributed to other relevant drivers.

Not long ago a CNS was a stand-alone instrument, installed in a car, 
containing a local map database and satellite communication, which 
enabled to apply only the first two business process. As cellular internet 
communication developed, typical CNSs turned into a Smartphone 
application, which uses the GPS-based location capabilities of the 
phone, to locate itself, and external servers who provide geographical 
and traffic data, as well as other services (e.g. route calculation, 
advertisement, social communication etc.). Therefore, a popular 
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physical architecture of a CNS is structured as depicted (by a UML 
Deployment Diagram) in ‎Figure 1. 3-dimentional boxes represent 
physical (hardware) nodes and execution environments within them, 
whereas rounded squares with a 'document' icon represent software 
artifacts installed within the nodes. The lines between nodes represent 
physical links, labeled by their type. The multiplicity (a label of the 
form min..max) represent the minimum and maximum instances 
of the related entity that must be present in any configuration of the 
architecture, where * denotes 'many' (i.e. any integer > 1). Note that 
a minimum multiplicity of 0 means that, that node is only optional 
(these nodes are shown in white color for clearance).

Usually, an architecture has to be derived from the business needs 
and is expected to support them. However, since the smartphone-
based client-server architecture is a popular platform, it may be 
considered as generic to many applications. Therefore, we are 
assuming here that this physical architecture, along with the business 
processes, are the prerequisites for our architectural designed process, 
which will be detailed in the following.

Functional and Non-functional Requirements

Types of requirements

System/software requirements are usually divided into two types, 
as defined in ‎[2]:

Functional requirements, which are statements of services the 
system should provide, how the system should react to particular 
inputs, and how the system should behave in particular situations;

Non-functional requirements, which are constraints on the services 
or functions offered by the system such as timing constraints, 
constraints on the development process, standards, etc.

Both types of requirements affect the design of a system, but they 
are usually treated differently. Within the software solution domain, 
for example, functional requirements are usually implemented 
by functions and interactions (i.e. function calls and responses, 
message transfers etc.) within the software application, or between 
the application and its external environment. Moreover, each 
functionality may usually be spotted at a certain location in the code. 
Non-functional requirements, however, are sometimes satisfied by 
selecting different implementation of the functions. For example, a 
requirement to construct a sorted list from an unsorted one may be 
implemented by various sort algorithms, with different complexity - 
depending on the required time/space performance constrains.

Non-functional requirements, on the other hand, are often applied 
to the system as a whole rather than individual features or services ‎[2]. 
For example, the response time of a system to a request may depend 
on various characteristics of various software components, e.g. the 
algorithm, the communication protocol, the structure of the data, the 
degree of concurrency, and more.

In many other cases, however, non-functional requirements are 
satisfied by applying certain functionality which is expected to provide 
the desired resolution. For example, security may be implemented by 
encryption, authorization or authentication mechanisms, availability 
may be implemented by ping/echo and re-routing mechanisms, 
accuracy performance may be implemented by approximation and 
compensation algorithms, and so forth. This approach, of turning 

2http://www.uml.org
3http://www.sparaxsystems.com
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non-functional requirements into corresponding functional 
requirements, lies in the heart of the process proposed in this paper.

Non-functional requirements are often Unspoken

In order to design and build a satisfactory system, explicit 
requirements are needed. Such requirements are not only the basis 
for the system design and implementation but are also the basis 
for its verification: Acceptance tests are usually based upon a set of 
system requirements which, when satisfied, define a threshold for the 
acceptable quality of the system by its client and other stakeholders. 
We evident, however, that some characteristics of the system are not 
always explicitly communicated by the client or other stakeholders, 
although they still exist at their unconscious expectations. Such 
expectations might be revealed only after delivery, in validation tests 
or in field operation. For example, A user might not explicitly require 
an "undo" function, but the first time he or she wants to recover from 
a mistake they will notice the absence of such capability. Such implicit 
or expected requirements are usually called unspoken (or tacit) 
requirements (as described in ‎[3], based upon the "Kano Model" ‎[4]). 
Unspoken requirements have two effects:

1.	 They turn down the satisfaction level of the stakeholders, since 
the stakeholders consider such features as "must-be quality" ‎[4], 
i.e. the system developer should have expected that such a feature 
will be needed and should have implemented it, even if it was not 
explicitly specified;

2.	 Adding such a feature to the system in late stages of development, 
or even after delivered, might be difficult.

The second effect might have significant implications when the 
changes needed to support the missing characteristics are in the 
underlying architecture. Nevertheless, requirement specifications 
usually concentrate on system functionality, while non-functional 
requirements often remain unspoken or vague. The "undo" example 
falls under the category of system usability - the quality attribute that 
makes the system better usable for the user. In many cases this is 
expected to be covered by a vague non-functional requirement such 
as "the system should be user friendly".

Unfortunately, non-functional requirements affect the entire system 
(as mentioned above) and therefore its underlying architecture, which 
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is usually designed at early development stages, and is difficult to be 
changed at later stages. Consider, for example, the case where a client, 
who already owns a system, requires to just one feature – that the 
system should continuously operate 7 days a week, 24 hours a day. The 
immediate solution of duplicating the resources may require further 
architectural changes to support data integrity, backup, resource 
selection, handoff, etc.

The architectural design process described further in the paper 
directly addresses this effect.

Functional Scenarios and Functional Specificaton

Functional Scenarios

The ISO/IEC/IEEE 12207 standard ‎[5] defines the architecture 
of a system as fundamental concepts or properties of a system in its 
environment embodied in its elements, relationships, and in the 
principles of its design and evolution. Although a software-intensive 
system architecture is often perceived as a system structure, it cannot 
be properly designed without referring to its behavior: Many structural 
attributes are derived from the way the system operates, such as which 
components need to interact (with each other or with the external 
environment), what should be the communication bandwidth, which 
functions should be allocated to which system components, etc. 
Philippe Kruchten, in his memorable 1995 paper entitled Architectural 
Blueprints- The “4+1” View Model of Software Architecture ‎[6] initiated 
and inspired the approach that operational scenarios (use-case view) 
should be at the center of the software architecture, impacting all its 
other views.

Although the operational capabilities of a system are captured in 
its functions, the entire functionality of a system is described by its 
functional scenarios. Therefore, while a system possesses certain 
functions, these functions may be applied in different orders in 
order to perform different functional scenarios. For example, an 
ATM (Automated Teller Machine) may be capable of performing the 
following functions: (a) approve access to a user (b) dispense cash (c) 
interact through touch-screen (d) print a slip (e) check user's balance. 
However, a cash withdrawal scenario is performed by applying the 
(a)→(c)→(e)→(b) sequence of functions, whereas a balance printout 

Figure 1: A typical physical architecture of a smartphone-based CNS (format: UML Deployment Diagram).
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scenario is performed by applying a different sequence, namely 
(a)→(e)→(d). Moreover, while every function yields a specific result, 
the results (goals) achieved by the first scenario are obviously different 
from the results achieved by the second one.

In this view we may define a functional scenario as a sequence 
of function applications executed to achieve one or more goals. The 
functions are applied throughout possible interaction of the system 
(e.g. the ATM) with its external environment (e.g. the human user, the 
bank's database server).

Since software-intensive systems are interactive and dynamic 
in nature, functional specifications are usually defined in a form of 
scenarios. One example is the user stories approach, used in agile 
software development processes, as defined, for example, in ‎[7]: A 
user story is a very high-level definition of a requirement, containing 
just enough information so that the developers can produce a reasonable 
estimate of the effort to implement it. User stories are often written in the 
form of "As a (role) I want (something) so that (benefit)", as suggested 
by Mike Cohn ‎[8].  A more detailed form of functional scenarios is 
use cases, which will be described in detail in the following.

When writing functional scenarios, it is possible to perceive 
the system as a black box, i.e. without specifying upfront its set of 
basic capabilities (functions). However, when these scenarios are 
implemented by the developers it is expected that they know which 
functions are already available for them, and to reuse these functions; 
new functions should be added to the system only when there is no 
function readily available to use. Thus, any functional scenario should 
be analyzed prior to its implementation to reveal the functions need 
to implement it. Moreover, since each function is executed at the 
responsibility of a certain component of the system, implementors
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should be aware of the system architecture, from which they 
learn about the "cost" of applying such a function, in terms of 
communication, computation and storage resources. The process 
of revealing the required system functionality and relate it to the 
architecture is described later as the process of functional analysis.

Non-functional requirements, as mentioned above, usually 
constrain the way the functionality is implemented. At this stage 
of requirement specification, it is not necessary to get into the 
implementation details, and therefore the relevant non-functional 
requirements may be just related to the scenarios, deferring their 
addressing to the implementation stage. Nevertheless, there are two 
pitfalls in this decision:

1.	 Some non-functional requirements have architectural impact, 
which we should be addressed as principle decisions, guiding the 
detailed implementation. For example, an availability issues may 
be resolved by using duplicate servers, which backup each other, 
instead of a single one. 

2.	 Some non-functional requirements are tacit (unspoken) and 
therefore might be overlooked. Revealing them at the final 
system tests or after deployment may cause costly repair or even 
re-design. Later in this paper we will show how to reveal those 
unspoken requirements as early as possible.

As mentioned above, a more formal way to write functional 
scenarios is use cases (e.g. ‎[9,10]), which will be described next.

Use cases diagrams

The entire set of a system's use cases capture its functionality as a 
set of scenarios, each of which is interpreted as "one case for using the 

Figure 2: Use Case Diagram of a Car Navigation System (CNS).
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system". Use cases may be specified at various levels, e.g. as business 
processes at the business level, as system processes at the system 
level, as internal processes at a subsystem or component level, etc. 
Although in this paper we will refer to system-level use cases, i.e. the 
processes performed by the system as a whole during its operation, 
it should be noted that these system level use cases are derived from 
the business level ones. The detailed description and discussion of the 
derivation method is beyond this paper, but as an illustrative example 
we may look at the business process 'using an elevator' which may 
be broken down into two system-level processes: 'calling an elevator' 
and 'travelling by elevator'.  Although these two processes comprise 
the using of an elevator, for the purpose of getting from one floor to 
another, they are independent upon each other, since a user may call 
an elevator without travelling, or travel by an elevator without calling 
it (e.g. by joining an already-travelling elevator).

The set of use cases of a certain system may be reflected in two 
views:

1.	 The global view, which shows the relation between the set of 
use cases (implemented within the system itself) and the set of 
external entities (called actors), with which the system interacts 
during its operation; 

2.	 The individual view, which addresses each use case separately by 
a detailed use case specification.

The two views are dependent upon each other, since the behavior of 
any single use case may affect the entire set, and vice versa. Therefore, 
it is always a debate which view should be generated first. For the 
brevity of the following we start with the global view, by using the 
commonly-used model of UML Use Case Diagram.

‎Figure 2 describes the system-level use case diagram, which depicts 
the global view of the entire set of system use cases. It should be 
noted that the main three aforementioned business-level scenarios, 
namely 'Planning a Trip', 'Navigating along Route' and 'Sending a 
Report' are replaced here by corresponding system-level use cases, 
complemented with other uses cases related to them by <<include>> 
and <<extend>> dependencies (labeled dashed arrows). The formal 
meaning of these dependencies is not discussed here, but informally 
they may be interpreted as follows:

1.	 A <<include>> B, if use case B is always executed during the 
execution of A, at a specified inclusion point;

2.	 B <<extend>> A, if use case B is optionally executed during 
the execution of A, subject to the occurrence of an event or 
condition at a specified extension point.

The squared frame (bearing the title of the system) denotes the 
system boundary, i.e. the border between the internals of the system 
(use cases, denoted as ellipses) and its external entities (actors, denoted 
as stick-figures).  When an actor is connected by a line to a use case 
it denotes that that actor interacts with this use case. When the line 
is arrowed, it denotes that that actor may initiate the use case. In this 
example we chose, for brevity, a system configuration (see ‎Figure 1 ) in 
which the optional nodes (i.e. the radio audio and the maps and reports 
providers) are not present. Therefore, the Driver is the initiator of the 
main use cases whereas the GPS Satellite is a supporting actor for 
the Locate Self use case (which appear to be included in all other use 
cases). Also note that the Calculate Route use case is included in Plan 
Trip, since it is always performed there, but it extends Navigate along 
Route, since it is invoked only at the event of deviation from the route.
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Use case specifications

1.	 Any use case has a use case specification which includes the 
following elements:

2.	 Actors. An actor is any entity, external to the system, which 
directly interacts with the system. There are two types of actors:

3.	 Other Stakeholders. A stakeholder (of a specific use case) is 
any entity who may affect the execution of the use case or may 
be affected by it. Actors, naturally, are stakeholders, since their 
interaction with the system affect the execution of the use case 
and they benefit from it. Other stakeholders are those who do not 
interact with the system during a use case, but they have certain 
interests in the execution or in the results of the use case. A 
typical example is a safety regulator that requires that the system 
will preserve the health of its user during the execution of a use 
case. A more specific example is the bank owners, who require 
that an ATM will collect a fee while performing a withdrawal use 
case initiated by a user.

It should be noted that stakeholders, who are not actors, have no 
graphical representation in UML's use case diagram. The architect 
must, therefore, take care of their definition in another way.

Note that a use case is considered successful only from the actors' 
and stakeholders' viewpoint, and not from the system's viewpoint; 
the system must perform successfully in both "successful" and 
"unsuccessful" (or "failure") results. For example, the system should 
successfully fail a withdrawal use case when the user's balance is 
insufficient.

1.	 A primary (an initiating) actor - which initiates one or more use 
cases, in order to achieve a goal; Not every use case needs to have 
primary actors – a use case is sometimes initiated according to 
an internal event or condition within the system. For example, 
an internal BIT (Built-in-Test) is automatically performed 
periodically, without any external trigger. A use case without 
primary actor may be called spontaneous. 

2.	 A supporting actor - which is initiated during one or more use 
cases upon system's request. A supporting actor has no specific 
goal to be achieved through this interaction, rather than assisting 
the system in achieving the primary actor's goal.

4.	 Preconditions. Preconditions are logical assertions that must 
be satisfied in order for the use case to be able to execute. 
Preconditions are not checked as part of the use case, but 
without their existence the use case might not have meaning. For 
example, a user cannot execute a travel in an elevator if an open 
elevator is not available at her current floor. The precondition 
'an open elevator is available at the floor' may be satisfied either 
by calling an elevator, prior to traveling, or when an elevator 
stopped at the floor as a result of another user's 'travel' use case.

5.	 Post-conditions. Post conditions are logical assertions which 
must be satisfied upon the completion of a use case, in order to 
define its "success". A use case is considered successful when (a) 
the primary actor's goal has been achieved and (b) when all the 
interests of the other stakeholders has been fulfilled. For example, 
a withdrawal use case of an ATM is successful only when the user 
(the primary actor) possesses the amount of money requested, 
and her account shows a debit for that amount + withdrawal fee, 
for the interest of the bank owners.
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The MSS (as all other scenarios in the following) is a single-track 
numbered sequence of steps describing the interactions between the 
system and the use case's actors (both primary and supporting). Each 
of these steps describes a single action performed either by an actor 
or by the system. Naturally, the first step describes the reaction of the 
system to the trigger. As described above, each step involves either the 
application of one or more of the system's functions (when the step is 
performed by the system) or an input/output function (when the step 
is performed by an actor).

The steps of the MSS are describes in a "success-oriented" fashion, 
i.e. they are deterministic and express only the positive conditions, 
under which the scenario may proceed successfully. For example, 
after the user entered her PIN to the ATM, the system's step should 
not be 'the system checks the PIN'  but rather 'the system approves the 
PIN'. The first one is nondeterministic and causes the MSS to split into 
a two-track sequence, whereas the second one, if succeeds, enables the 
MSS to continue in its single-track sequence. If the step fails (e.g. the 
PIN was not approved) the MSS is discontinued. If there is a branch 
(see next) that specifies the case when this failure condition occurs, it 
will continue the scenario. 
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Branches are scenarios of their own, i.e. they are also specified as 
sequences of interactive steps. Their numbering may me derived from 
the original sequence. E.g. steps numbered 6A1, 6A2, etc, specify the 
set of the steps of branch A, deviated from step 6 of the MSS, whereas 
steps numbered 6A3B1, 6A3B2, etc, specify the set of the steps of 
Branch B, deviated from step 6A3 of Branch A.

Branches may be categorized into two types:

1.	 Alternative - a branch whose sequence of steps would lead to 
"success" (i.e. all post-conditions satisfied);

2.	 Exception - a branch whose sequence of steps would lead to 
"failure" (i.e.  not all post-conditions satisfied).

This categorization plays a crucial role in the quality scenarios, 
which will be described in the following.

‎Figure 3 below Describes the "Navigate along Route" use case which 
appears in the use case diagram of ‎Figure 2 (the underscored text is 
explained later).

6.	 Trigger. Trigger is the event that initiates the use case. The 
trigger is caused by either a primary actor or by the system itself 
(when the use case is spontaneous). In many cases the trigger 
may be caused subject to given pre-conditions; in such a case the 
meaning is that the trigger event cannot occur at all. For example, 
submitting a registration form to a site can be performed only if 
the "submit" button is displayed and enabled.

7.	 Main Success Scenario (MSS). The main success scenario 
is the shortest and most straightforward way to go from the 
trigger to the successful completion of the use case (i.e. when 
all the primary user's goals have been achieved and all the other 
stakeholders' interests have been fulfilled).

Figure 3 : The Navigate along Route use case specification.

8.	 Branches. Branches are deviations from the MSS (or from other 
branches) which may be caused when the original scenario 
cannot perform a certain step. Each branch should specify its 
entry condition in terms of location (i.e. in which step of the 
original scenario) and condition (i.e. what happened in the 
original scenario). Regarding the previous example, a branch 
specifying the sequence of actions to be performed when the 
PIN in not approved, will be forwarded by a sentence of the form 
'in step N of the MSS – the PIN was not approved'.
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Functional Analysis and Functional Architecture

Functional Analysis

As mentioned above, from the system’s point of view, a functional 
scenario is a sequence of function applications. Since these functions 
should be implemented by functional components (e.g. software 
modules), we first need to identify the required functions, reflected in 
the functional scenarios, and check whether this function is contained 
within the existing architecture. If not, the function should be allocated 
to a component or propose a change in the existing architecture by 
introducing a new functional component and integrate it into the 
architecture. If no architecture exists yet, an initial one may built, by 
proposing a set of initial functional components, collecting all the 
required functions from all the use cases, and allocating them to these 
components.

Functional Analysis is the process described above, and is defined in 
ISO/IEC/IEEE 24765:2010 ‎[11] as follows:

"Examination of a defined function to identify all the subfunctions 
necessary to accomplish that function, to identify functional 
relationships and interfaces (internal and external) and capture these 
in a functional architecture, to flow down upper-level performance 
requirements and to assign these requirements to lower-level 
subfunctions"

We have highlighted some of the terms, in order to interpret them 
in view of our use-case-based approach, as follows:

1.	 Defined functions are the use cases themselves: each use case is 
actually a service (high-level defined function) of the system;

2.	 Subfunctions are the functions that the system should apply while 
executing a use case. These can be identified in the trigger(s) and 
in all the steps of both the MSS and all the branches of the use 
case. In the use case specification in ‎Figure 3 the subfunctions, 
which should be implemented in the system, are marked with a 
single underscore, whereas the user inputs, to which the system 
have to respond, are marked with a double underscore. Once 
identified, these functions need to be assigned to functional 
components;

3.	 Functional relationships and interfaces comprise the structural 
view of the functional architecture, which is constructed from a 
set of chosen functional components, to which the subfunctions 
are assigned. Functional architecture is explained in Subsection 
below.

4.	 Upper-level performance requirements refer to the non-
functional (quality) requirements, which are expected from the 
use case, and their assignment to the lower level subfunctions is 
the concern of following Sections.

Functional Architecture

A functional architecture is the set of functional components, their 
assigned functions and their internal and external interface. The 
entire architecture of a software-intensive system may be reflected in 
four views ‎[12]:

1.	 The physical structure view: The physical (hardware) 
components and their physical communication links. This 
view may be modelled as a UML Deployment Diagram, as 
shown, for example, in ‎Figure 1;
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2.	 The functional structure view: The set of functional components, 
identified in the interaction view with their internal and external 
interfaces. This view may be modelled as a UML Component 
Diagram, as will be shown below;

3.	 The combined structure view: The allocation of functional 
components to physical components and the mapping between 
functional and physical interfaces. This view may be modelled as 
a UML Composite Diagram.

4.	 The interaction view: The implementation of the use cases as 
interactions among a set of functional components, either with 
each other or with the external environment. This view may be 
modelled as a set of UML sequence diagrams;

The term functional architecture discussed here refers mainly to the 
functional structure view.

It is directly implied that the interaction view and the functional 
structure view are tightly coupled, since they both refer to the 
same set of functional components. Furthermore, according to the 
functional analysis process described above, this interrelationship 
has the "chicken and egg" effect: functions are to be assigned to 
functional components and functional components are built in 
order to implement function. When a system is initially built "from 
scratch" it can start with an initial selection of functional components, 
constructed by grouping all the subfunctions identified in the use 
cases into (highly cohesive) function groups - each of which defines an 
initial functional component. The implementation of the upper-level 
functions (i.e. the use cases) is then may be designed, comprising the 
interaction view. The interfaces among the functional components, 
and between functional components and the external environment, 
is directly derived from the components' interaction needs (i.e. two 
components need a functional interface if and only if they have to 
interact with each other).

In this paper we do not explicitly detail the construction of the 
interaction view; we rather intuitively define a set of functional 
components, based on the functions identified in the use cases. 
These components correspond to the software artifacts shown 
in ‎Figure 1 (except that the two DBs are considered as a single 
functional component (Map Services). Consider, for example, the 
set of (underscored) functions in ‎Figure 3, and assume that similar 
function-identification has been performed over the entire set of use 
cases of this case-study. The result might be a functional structure 
view (UML Component Diagram) as shown in ‎Figure 4, and the list of 
components and their assigned functions from use case #2 are shown 
in table 1 . When a component requires a service (i.e. call a function) 
from another component, it uses its appropriate required interface (a 
short line with a half-circle at its end). When a component enables 
other components to use its services (respond to a function call) it 
exposes a provided interface (a short line with a full circle at its end). 
Interaction between components is performed, therefore, through a 
pair of required-provided interfaces. "Free" interfaces, which are not 
paired with others, denote interaction with the external environment.

The dashed arrow between the Map Requests pair of interfaces 
denotes that the specification of the (provided) interface is determined 
by the Map Services component (which resides on the server side) and 
the (required) interface on the Navigation App side depends upon 
it (i.e. needs to be adapted accordingly). The note "static binding" 
specifies the binding strategy between these pair of components; 
binding strategies will be elaborated later.
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The physical architecture view (‎Figure 1) and the functional 
architecture view (‎Figure 4) must be consistent with each other. This 
is depicted in the combined architecture view (‎Figure 5), which shows 
how the components of the functional architecture are deployed onto 
the nodes of the physical components. If two components interact 
within the same node, they may maintain their existing interfaces. 
However, when the interaction is performed over physical links, the 
functional interface must be delegated to/from communication ports, 
which enable the physical communication. ‎Figure 5 below shows 
the combined architecture view of the CNS in the form of a UML 
Composite Diagram. Note that the nodes of the physical architecture4 
are denoted here as parts (rectangles) equipped with ports (small 
squares on the parts' circumferences), indicating the ends of physical 
links. Cross-node and external functional interface are related to 
corresponding ports with <<delegate>> relation.

Part of the interaction view, which implements use case #2 as an 
interaction between the functional components, is shown in ‎Figure 
6 as a UML Sequence Diagram. Note that the messages marked 1.xx 
denote the steps of the trigger+MSS, whereas the messages marked 
2.xx denote the steps of Branch A.
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Up to this stage we have dealt only with the functional requirements, 
as reflected in the functional scenarios, i.e. the use cases. Next, we will 
introduce the quality attributes (non-functional requirements) and 
show how they might impact the functional architecture.

Quality Attributes and Quality Scenarios

Run-time quality attributes

The quality of a system is the degree to which the system satisfies the 
stated and implied needs of its various stakeholders, and thus provides 
value. This definition is cited from the ISO 25010:2011 standard 
‎[13], which defines a quality model for (software-intensive) systems, 
enlisting the specific characteristics that should be possessed by a 
system in order to assure its quality. These characteristics are often 
referred to as quality attributes. According to this standard there are 
eight quality attributes, which are further decomposed into more 
specific sub-attributes, as shown in table 2. However, the impact 
of these attributes and sub-attributes on a system differs in two 
significant aspects, which leads to divide them into two categories:

Component Assigned Functions Required interface useda

Locator Get current location GPS Signals

GUI (respond to) “Go” button pressed User Commands

(respond to) "Cancel" key pressed User Commands

Display map and route User Displays

'navigation' mode request Commands

Navigation App Enter 'navigation' mode

Retrieve the existing route

Map data request (request) Map Requests

Re-calculate the route

Stop Navigation (exit 'navigation' mode)

Map Services (respond to) a map data request
Table 1: Functional components and their assigned functions.
aAn interface is used only when interaction with another component is required

Figure 4: A proposed functional architecture for the CNS case-study (format: UML Composite Diagram).

4The <<execution environment>> blocks are not shown, for brevity.
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Figure 5: The combined architecture view of CNS (Format: UML Composite Diagram).

Figure 6: Implementation of use case #2 as an interaction among the components of the functional architecture (Format: UML Sequence Diagram).
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1.	 Those who affect the way the system behaves and responses to 
various events during its operation;

2.	 Those who affect the (architectural) design of a system, by 
imposing an architecture which should satisfy them.

We refer here to attributes of the first kind as run-time attributes, 
whereas the second kind will be denoted here as design-time attributes. 
Accordingly, we have divided the sub-attributes in table 2 into these 
categories.

This categorization requires further explanation: Run-time 
attributes actually define situations that may or may not happen while 
it is operating. Time behaviour (under performance efficiency), for 
example, may be maintained during most of the system operation, but 
also might be violated at peak times. Considering this quality attribute 
(non-functional requirement) may impose changes in the system 
behaviour, e.g. how to recognize time-behaviour violation, how to 
respond to it and how to recover from it. In other words, additional 
functionality should be incorporated into the system, regarding 
quality attributes. In the following Sections we suggest how to address 
this issue. Needless to mention that an inoperable system never faces 
time behaviour violations.

Design-time attributes are addressed when the system undergoes 
development stages, either at initial development or during 
maintenance cycles. Adaptability (under Portability), for example, does 
not affect the functionality of the system (i.e. what should the system 
do), but it rather impacts the way this functionality is implemented, in 
order to enable its adaptation to various environments in the future. 
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In the scope of this paper, we refer only to run-time quality attributes, 
since, as shown in the following, they have significant effects on the 
operational scenarios (use cases) of the system.

Quality Scenarios as use cases

Since quality attributes have significant influence on system 
behaviour, there is a natural relationship between them and the 
functional scenarios. Suggestions for such relationships appear in 
other works, such as ‎[14-16] and more. In this work we take this idea 
one step further, and incorporate quality scenarios directly into the 
use cases, to create a single unified functional model. In order to do 
so, we start with quality scenarios on their own, mapping them later 
into our use-case specifications.

Bass, Clements and Kazman ‎[17] provided a format for quality 
attribute scenarios, containing six parts, as follows:

1.	 Stimulus is an event that happens during system operation, 
indicating violation of a quality attributes. Examples may include 
loss of communication (violating availability), an attempt to 
access confidential material (violating security) or memory 
overflow (violating resource utilization);

2.	 Environment (or context) is the configuration or circumstances 
under which the stimulus may occur (e.g. in maintenance 
configuration, when the system is on-line);

3.	 Stimulus source is the entity which initiates the stimulus. This 
entity may be external to the system (e.g. a user, a remote 
computer) or the system itself (e.g. by throwing an exception, 
raising a flag or invoking a watchdog);

Quality Attribute Run-time sub-attributes Design-time sub-attributes

Functional Suitability Functional Completeness
Functional Correctness
Functional Appropriateness

Performance 
Efficiency

Time behaviour
Resource Utilization
Capacity

Compatibility Interoperability Co-existence

Usability Appropriateness 
Recognizability
Operability
User Error Protection
Accessibility

Learnability
User Interface Aesthetics

Reliability Availability
Fault Tolerance
Recoverability

Maturity

Security Confidentiality
Integrity
Non-repudiation
Authenticity
Accountability

Maintainability Modularity
Reusability
Analysability
Modifiability
Testability

Portability Adaptability
Installability
Replaceability

Table 2: Quality Attributes and Sub-Attributes.
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4.	 Artifact(s) are the parts of the system (including the system as a 
whole) affected by the stimulus (e.g. CPU, disk, communication 
channel);

5.	 Response describes the course of actions the system performs 
when a stimulus occurs. Part of the response should be the 
indication that a response happens (e.g. catching the thrown 
exception, checking the status of a flag). The following steps may 
include various action, such as disabling the stimulus source, 
repairing the damage, if incurred, or recovering and getting back 
to normal operation;

6.	 Response measure is the means by which it can be decided 
whether the response was satisfactory (e.g. how long did it take 
the system to get back to "normal" pace).

In simpler words, the stimulus described a fault that has happened 
to the system during it operation. Such a fault may cause the system 
to fail (e.g. stop working, lose data), by not providing its expected 
service, or not. The purpose of the response is to prohibit a fault from 
becoming a failure. The entire quality scenario may, therefore, be 
described as a sequence of actions, as follows:

In a certain environment…
   a stimulus source generates…
      a stimulus, which affects…
         artifacts of the system. Then…
            the system initiates a response…
               whose success is evaluated by response measures.

Although described as scenarios, it should be noted that, unlike 
functional scenarios, quality scenarios are not initiated by themselves, 
but rather start off during functional scenarios. An intruder, for 
example, is not a different actor from a regular user. Moreover, an 
intruder tries to make the system believe that he is a regular user, by 
logging in and gaining accessibility to data and processes; It is the 
system's security mechanism who indicates that a user might be an 
intruder and respond accordingly. The fault is, therefore, the existence 
of an intruder. The eventual failure might be, for example, stealth of 
confidential data. The system response is an attempt to prevent the 
fault to become a failure.

A loss of GPS connection, for another example, is a fault that may 
cause the failure of the driver's goal to arrive at her destination. The 
system may employ a variety of responses, such as attempting to 
re-establish communication, choose another location service (e.g. 
triangulation between cellular antennas or a prediction model), or 
even try to restart the application in attempt to recover from the 
undesired situation.
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The actions taken by the system during its responses provide, in 
fact, additional functionality, i.e. the system now has two types of 
functional behaviour:

1.	 The actions it has to execute, in order to accomplish its tasks, 
which are directly derived from functional requirements, and

2.	 The actions it has to execute as a response to stimuli (faults), which 
are indirectly concluded from non-functional requirements.

The first type of functional behaviour may be captured in functional 
scenarios, written as use cases (as described above). Since the (run-
time) quality scenarios appear to be functional in nature, there is a 
good reason to write them in the same format. Bachman ‎[18] already 
shown that quality scenarios can be written in use case format. 
However, in that approach, quality scenarios are written as separate 
use cases. Therefore, we chose to map the quality attribute format 
shown above directly into our use-case specification format, in order 
to enable to convert explicit quality scenarios, written separately, into 
use cases, or parts of them.

In the mapping between quality scenarios and use cases we 
distinguished between three cases:

1.	 The quality scenario is an independent use case of its own. For 
example, responding to an 'emergency' signal arriving from a 
button pushed by a user, at any time;

2.	 The quality scenario is a separate use case, extending an 
existing use case (with <<extend>> dependency). For example, 
responding to a 'too close' signal arriving from a proximity 
sensor, while reversing the car;

3.	 The quality scenario is a branch within an existing use case. For 
example, responding to an unapproved PIN, while the user is 
trying to withdraw money from an ATM.

Table 3, 4 and table 5 below show the mapping between the parts 
of a quality scenario onto the corresponding parts of a use case, in 
these three cases. The Artifact part in all three cases is the system, as 
defined by the boundary frame in the use-case diagram, depending 
on the level of the use-case specification (i.e. system, sub-system, etc.). 
Therefore, we excluded it from the tables.

Using this mapping, quality scenarios (driven by non-functional 
requirements) can be incorporated into the functional scenarios, 
yielding a unified functional specification in use-case format. This 
is useful when the quality attributes and their specific responses 
are explicitly defined. Consider, for example, the UC#2: Navigation 
along Route use case. This use case already contains two responses to 
situations related to quality attributes, as follows:

Quality scenario part Use case part Comments

Environment (context) Pre-conditions The configuration, or situation, under which certain stimuli may occur

Stimulus Source A primary actor

Stimulus Trigger The trigger is caused by a primary actor which initiates a Main Success 
Scenario (MSS)

Response The MSS following the trigger, and any 
sub-scenarios branching from it

Response measurement Post-conditions Satisfying the post conditions means success. It can be tuned more 
quantitatively, by specifying an explicit degree of post-condition 
satisfaction.

Table 3: Mapping between quality scenarios ‎[17] and use cases – case (a).
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1.	 Step 7 of the MSS deals with the case where the location of the 
vehicle is off route – a violation of the Functional Completeness 
(under Functional Suitability) attribute. This condition (the 
stimulus), which comes spontaneously from the system itself 
(the stimulus source), implies, as a response, the invocation of 
an extending use case, namely UC#4: Calculate Route. If UC#4 
will terminate normally, UC#2 will continue, However, if UC#4 
will terminate abnormally (e.g. the route cannot be calculated), 
UC#2 will also terminate, leaving the post-condition ('car arrived 
at destination') unsatisfied. The success/fail result is the response 
measure.

2.	 Branch A of UC#2: Navigate in Route responds to the violation of 
the Operability (under Usability) quality attribute (the driver has 
no control over the navigation process). In this case the response 
is implemented as a branch, where the exception point could be 
any step in the MSS, and the event causing the exception is the 
'cancel' button pressed. It should be noted that while the driver 
deliberately pressed 'cancel' it causes the task to fail (i.e. violating 
the post-condition of arrival to destination).

The greater problem, however, arises when quality attributes are 
expressed only generally (e.g. "the system should be user-friendly") 
or even stay as unspoken expectations (e.g. the system is naturally 
expected to be user-friendly).
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Applying quality attributes to use case scenarios

As already mentioned, (run-time) quality attributes should often 
be considered when undesired circumstances occur while the system 
is performing its tasks. It was also mentioned that while functional 
requirements define what the system has to do (i.e. apply functions in 
a sequence of steps), non-functional requirements define how well the 
system accomplishes its tasks. Therefore, we suggest to explicitly ask 
"How well?" questions about the functions used during a functional 
scenario5. 

As an example, consider again the MSS functional scenarios 
of UC#2: Navigation along Route. During the functional analysis 
process, as defined above, we defined the underlined functions 
and assigned them to functional components. Now we go back to 
investigate those functions in view of quality issues. For example, the 
function "enter 'navigation' mode" may be asked "is the driver aware 
of the mode change"? - a question which is related to the Usability 
quality attribute. Step 4 of the MSS of UC#2 applies the function 
"download map data from the server". The following question directly 
relates to Availability: "does the server respond within TBD seconds?".

"How well?" questions not only highlight specific situations to which 
a quality attribute applies, but rather help to reveal a related quality 

Quality scenario part Use case part Comments

Environment (context) An exception point in the extended use case

Stimulus Source Internal (the system itself) or external (a 
primary actor)

Stimulus The event that satisfies the condition in the 
exception point

Response The MSS of the extending use case and any 
sub-scenarios branching from it

Response measurement Post-conditions If the extending use case returns to the extended use case upon completion, 
then the results are implied by the post-conditions of the extending use 
case. Other wise – by the post-conditions of the extending use case

Table 4: Mapping between quality scenatios ‎[17] and use cases - case (b).

Quality scenario part Use case part Comments

Environment (context) While executing the existing use case

Stimulus Source Internal

Stimulus A violated condition in the current sequence of 
actions, which causes the scenario to "skip" to a 
branch.

Response Sequence of steps in either an MSS or a branch The branch may be one of the following:
a) An alternative, which leads to successful completion 
of the use case. This happens when the system managed 
to prevent the fault from becoming a failure;
b) An exception, which describes an attempt of the 
system to prevent the failure but leads to unsuccessful 
completion of the use case.

Response measurement Post-conditions a) An alternative leads to satisfied post-conditions, 
indicating success
b) An exception leads to unsatisfied post-conditions, 
which indicate failure

Table 5: Mapping between quality scenatios ‎[17] and use cases - case (c).

5"How well?" questions may also interpret as "Does anything can go wrong?", following a 
version of the famous Murphey's law – If anything can go wrong – it will!
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attributes, which were not explicitly specified or implied, as indirect 
consequence from other requirements. Suppose, in the same example, 
that there is a requirement for continuous/smooth display of the 
way in front of the driver. Missing map data may cause a delay in 
the display, which makes the navigation application unavailable to the 
driver for a while. Availability, in this case, is indirectly implied from 
a display issue. In many cases it is not easy to derive such a conclusion 
from the quality attribute itself; The question asked here referred to a 
specific situation and revealed immediately the availability issue.

Once the question asked, it points at a potential stimulus ('map 
data is not downloaded'). The stimulus source, in this case, is not 
external, but rather the system itself which indicates (e.g. by a time-
out mechanism) that the server is unavailable. The natural response, 
then, is to generate a branch, which will be performed when this event 
occurs. Specifically, a new step (say 4.1) might be inserted between 
step 4 and 5 in the MSS as follows: "The system verifies that the map 
data is provided within TBD seconds". In addition, a new branch (say 
Branch B) should be added to the use case, such as an alternative 
(or an exception) from step 4.1 of the MSS: "The map data was not 
provided within TBD seconds".

However, this is just the beginning, since the following issues 
should now be considered:

1.	 What should the system do now? 
2.	 Is this branch an alternative (i.e. leading to task success) or an 

exception (leading to task failure)?
3.	 If new functionality is added, which components should be 

assigned the new functions?
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The decision of what the system should do depends on the quality 
tactic chosen. Quality tactics are systematic actions taken to resolve 
quality attribute issues, and are proposed by several sources, such as 
‎[17,19,20] and more. Choosing the most appropriate tactic is at the 
discretion of the architecture team, based on considerations beyond 
this discussion. In the scope of this paper we assume that a tactic was 
chosen, and we elaborate only on the implications of this choice. One 
of the most popular availability tactics is redundancy, i.e. the system 
maintains a set of alternative resources, such that if any resource 
becomes unavailable, the system invokes an alternative resource to 
provide the required service.

Applying the redundancy tactics to our example means that the 
system should maintain multiple map data servers, and when one is 
unavailable it will reroute the service to a different one. If there are 
enough alternative servers, the eventual unavailability of all of them 
together is statistically negligible, so the system may go back to the 
MSS and continue the task. This means that the proposed branch is 
to be classified as 'alternative', since it prevented the fault (no data 
available) from becoming a failure (the driver will lose her way). 
The above is summarized in the new version of UC#2: Navigation 
along Route, as depicted in ‎Figure 7 below, with the modification 
highlighted.

The new functions, namely "Verify that the map data is provided 
within TBD seconds" and "propose an alternative server", should now 
be assigned to functional components of the architecture. Moreover, 
the architecture might be modified in order to reflect the server 
redundancy. The architectural modifications and their implications 
are detailed next.

Figure 7: A modified version (modifications highlighted) of the Navigate along Route use case specification

https://doi.org/10.15344/2456-4451/2019/144


Int J Comput Softw Eng                                                                                                                                                                                           IJCSE, an open access journal                                                                                                                                          
ISSN: 2456-4451                                                                                                                                                                                                        Volume 4. 2019. 144                            

Architectural Modifications for Satisfying Quality Scenarios

Applying the new functionality to the functional architecture

The architecture is the platform that supports the system behaviour. 
Above we described the process of constructing an architecture on 
the basis of the functional specifications. As we saw in the previous 
Section, resolving quality attribute issues may impose additional 
functionality on the system. Since the functionality is directed 
to the architecture by assigning the new functions to functional 
components, the architecture should be re-addressed, and if the 
current set of functional components cannot (or should not) support 
the new functions, new components (and their interfaces) should 
be added. Moreover, the chosen tactics (e.g. resource redundancy) 
may impose further changes to the structural architecture. The new 
functionality, together with the modified set of components may also 
require modifications to the system's behaviour (i.e. the interactions 
of components between each other or with the external environment). 
This means that the entire architecture should now be modified 
accordingly. We demonstrate the architecture modification process 
on the basis of our CNS case study.

The first step is the functional assignment. Consider the set of 
functional components comprising the CNS functional architecture 
shown in ‎Figure 4. The new function "Verify that the map data is 
provided within TBD seconds" may be naturally assigned to the 
Navigation App component, which, while sending a map request 
to the Map Service component may set a watchdog, which will 
track the request and will raise a timeout flag when the request is 
not answered within the allocated time. Nevertheless, the "propose 
an alternative server" function cannot be easily assigned to the 
Map Services component, since, in the current architecture, this 
component comprises a single source of data, without redundancy. 
If this component is now duplicated, proposing an alternative server 
should be allocated to a different component, who "knows" all the 
Map Services. A common architecture pattern for such a situation 
is the Broker pattern ‎[21]. A broker is a mediator between service 
consumers and service providers. The broker does not provide any 
service by its own, but it maintains a list of registered service providers.

Citation: Tomer A (2019) Functional Angels and Quality Devils: Incorporating Quality Scenarios into Functional Scenarios for Software-intensive System 
Architecture. Int J Comput Softw Eng 4: 144. doi: https://doi.org/10.15344/2456-4451/2019/144

       Page 14 of 17

When a consumer needs a service, it requests the broker, who provides 
the address of one of its registered service providers. The consumer 
can now connect directly to this provider and request the service. This 
is naturally analogous to a taxi dispatch station, who connects drivers 
(trip providers) to clients (trip consumers).

Thus, the next step is to replace the single Map Services component 
by a single Map Broker and a set of multiple Map Services components. 
This implies that the Navigation App component will now have to 
possess an additional (required) interface to connect to the (provided) 
interface of the Map Broker, in order to request a map service. Once 
the Map Broker provides the address of a selected Map Services, the 
Navigation App may approach it using the existing Map Requests 
interface pair. The resulted modified architecture is shown in ‎Figure 
8  below.

It should be noted that the change from a single server to multiple 
servers, mediated by a broker, requires also a change in the binding 
policy: The binding in the original functional architecture (‎Figure 4), 
between the Navigation App component and the (single) Map Services 
component is static, meaning that the application always knows that 
server. When multiple servers are used (as depicted in the modified 
architecture of ‎Figure 8), the binding between an application and a 
server becomes dynamic, i.e. may change over time. However, the 
binding of the (single) broker to the application now becomes static. 
Moreover, the Navigation App component must now have a new 
required interface (to the Map Broker component) in addition to the 
one it already has (to a Map Services component).

From the behavioral point of view, the implementation of use case 
#2: Navigate along Route, as described in ‎Figure 6, has to be changed 
by adding the Map Broker component and the "swapping" mechanism 
enabling the Navigation App component to request alternative Map 
Services component and to connect to it. ‎Figure 9 below shows a 
part of the modified sequence diagram of ‎Figure 6 - an elaboration 
of the "download_from_server" option ('opt' fragment) that comes 
after the Navigation App's unsuccessful attempt to retrieve a relevant 
map area within its locally-available map data: In order to indicate an 
unresponsive Map Services component (named MS1) a watchdog is 

Figure 8: The modified functional architecture for the CNS case-study, containing a Map Broker and multiple Map Services components.
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invoked in parallel to the map data request. A 'timeout' flag raised by 
the watchdog indicates the unresponsiveness. In this case a request for 
an alternative Map Services component is issued to the broker, which 
returns the address of another Map Services component (named 
MS2). Then the Navigation App component may approach MS2 and 
download the requested map data.

Further implications of the architectural modifications

In the previous Subsection we proposed architectural changes 
implied by considering an Availability issue, which were based upon 
two architectural decisions:

1.	 Using multiple servers (i.e. by applying the Redundancy tactics);
2.	 Changing the binding of an application to a map server from 

static to dynamic (by applying the Broker architecture pattern).
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We have also demonstrated these changes by means of UML 
models.

However, such changes may have implications on the architecture 
beyond those shown in the example, as follows:

Modifications to the physical architecture

In the physical architecture shown in ‎Figure 1, we assumed that the 
map data DB resides in a physically separate node (a server). When 
a broker is introduced, it should be decided where to locate it, where 
the possibilities are: (a) in the Smartphone node, (b) in the Navigation 
Server node, (c) in a (new) separate node. Such decision immediately 
requires new considerations about the physical links, which might 
lead to physical architecture change.

Figure 9: A modification to the implementation of use case #2, using a Map Broker.
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Added functionality

On top of the functionality added to use case #2: Navigate along 
Route (as shown in ‎Figure 7), the broker mechanism, for example, 
requires that Map Services components will be able to register/
unregister at the broker as service provision candidates. It is likely 
that a new use case ("Register/Unregister") is to be added to the use-
case diagram of ‎Figure 2. In addition, we may want the broker to 
propose only "live" servers, thus enabling it to check a server's status 
before proposing it as an alternative candidate. This might be added 
as additional action/condition to the use-case specification (and, 
consequently, to the sequence diagram). Note that corresponding 
interfaces (between the Map Broker and Map Services components), 
to support these two functionalities, has already been considered in 
the modified architecture of ‎Figure 8.

Additional quality scenarios

In the original architecture, the single Map Services component was 
a single point of failure, thus giving rise to an Availability scenario 
caused by the unresponsiveness of the server. When the component 
was duplicated, and a Map Broker introduced as a mediator, the 
availability of the server was resolved, but caused the broker to become 
a single point of failure, which might raise a new Availability scenario, 
caused by unresponsiveness of the broker. Although this issue may 
be revealed by applying a "How well?" question to the "propose an 
alternative server" function in Branch B of the modified use case, the 
considerations, as well as the proposed tactics, may be different this 
time. The phenomenon that "every solution causes new problems" will 
be discussed in the last Section of the paper.

Summary and Conclusions

In this paper we suggested an approach to resolve run-time 
quality attribute issues in software-intensive systems, whether 
expressed explicitly (as non-functional requirements) or implicitly 
(as stakeholder expectations about the quality of the system). Our 
approach is based upon substituting quality attributes by quality 
scenarios, thus providing functional solutions to non-functional 
issues. We assume that run-time quality attribute violations usually 
emerge while the system is operating (i.e. applies its functionality), 
and therefore such faults can be indicated in the functional scenarios, 
by applying "How well?" questions, i.e. trying to identify what can 
go wrong during this operation. As a response, we introduce new 
functionality, in attempt to prevent the fault from becoming a failure 
of the entire task. Presuming that an architecture already exists, we 
apply the new functionality to it, with the possible use of architecture 
patterns, modifying the architecture accordingly.

In the following we summarize the proposed two-phase process, 
as detailed and demonstrated in the paper, using UML modeling. We 
refer to the architecture in its four views, as mentioned in the above.

1.	 Phase 1: Construct an initial functional architecture
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2.	 Phase 2: Consider quality attributes and modify the architecture 
accordingly

Although the process described above is systematic, and may lead 
to "acceptable" architecture, it is not simple and requires considerable 
effort of skilled software and system architects. It should also be noted 
that the term "acceptable architecture" is rather subjective, depending 
upon other considerations, such as stakeholder satisfaction, schedule, 
budget, etc. On the other hand, since the process is model-based, a 
number of resulting architectures may be compared and evaluated 
conveniently.

In the case-study described throughout the paper we demonstrated 
the process over a single issue (map server availability). As discussed 
above, an architectural modification may yield to additional quality 
issues, repeatedly. However, addressing a big number of quality issues 
at one iteration may complicate the process significantly. Therefore, the 
number of quality issues resolved at any one time should be adapted 
to the capacity and skills of the architects, as well as to stakeholders' 
priorities.

Further Research

The approach proposed in this paper needs further practical 
validation. Parts of it were already been applied at model-based 
software engineering courses, delivered by the author, both at 
undergraduate and graduate levels, and proved to be applicable. As

1.	 Construct a Use Case Model (Use-case Diagram + Use-case 
Specifications) from the functional requirements;

2.	 Identify the functions comprising the functional scenarios (MSS 
+ branches);

3.	 Propose functional components and assign to them the functions 
identified in step 1.2;

4.	 Implement the Use-case specifications of step 1.1 as interactions 
between the components proposed in step 1.3, constructing the 
Interaction View as a Sequence Diagram;

5.	 Derive the provided and required interfaces for each functional 
component from the interaction needs of step 1.4, constructing 
the Functional Architecture as a Component Diagram;

6.	 If applicable, obtain the Physical Architecture of the entire system 
as a Deployment Diagram and combine it with the Functional 
Architecture of step 1.5 into a Combined Architecture as a 
Composite Diagram.

1.	 Apply "How well?" questions to the functions identified in 
step 1.2 (i.e. try to anticipate faults that may happen when the 
function is performed);

2.	 Relate each fault to a quality attribute (or sub-attribute) and 
choose a response tactic;

3.	 Add the response to the Use-case Model as new functional 
scenarios, my means of either (a) a new use case, (b) an extending 
use case of the current one or (c) a branch in the current use case;

4.	 Identify the newly added functions implied from step 2.3;
5.	 Assign those functions to existing functional components, or 

propose new ones;
6.	 Modify the Interaction View (the Sequence Diagrams) by 

consequently implementing the scenario modifications made in 
step 2.3;

7.	 Modify the Functional Architecture (the Component Diagram) 
in correspondence with the modifications of step 2.6;

8.	 If applicable, modify the Physical Architecture (the Deployment 
Diagram) and the Combined Architecture (the Composite 
Diagram) accordingly;

9.	 Repeat steps 2.1-2.8 until reaching a satisfiable architecture 
(subject to the applicable architecture assessment criteria).
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mentioned, the quality of the resulted architecture is subjective, but 
further research may attempt to apply more objective criteria.

Another research direction might be to automate the process. 
However, since the application of it is based on human knowledge and 
decision-making it is inevitable to assume that such automation must 
be addressed using artificial intelligence techniques. One of the most 
significant issues throughout the process is the consistency among the 
various views of the architecture, although the systematic application 
of the process, i.e. deriving new models from other models, is intended 
to preserving consistency "on the fly".

In this paper we used structured text (use-case specification) to 
formalize functional scenarios. There are other models used to describe 
scenarios, such as UML Activity Diagrams. Since the scenario model 
is used here as the source where functions are identified, it appears 
that Activities or Actions of an Activity Diagram might serve the same 
purpose. We intend to explore this issue in the future.

The discussion in this paper was excluded to only run-time 
quality attributes. In fact, non-run-time (design-time) attributes 
apply to the development process rather than to the functionality 
of the system. Modifiability (under Maintainability), for example, 
is violated in the event that a development cycle fails to satisfy a 
newly introduced requirements, since one of its components cannot 
be changed. In order to prevent this fault from becoming a failure 
(i.e. a new version cannot be released) a change to the development 
process may be applied, suggesting to develop a modifiable (generic) 
component instead. Thus, the same process may be applied to non-
run-time attributes, given that the development process is described 
as a functional scenario (for the "development team" system). This 
might lead to another research direction, dealing with development 
processes rather than with system operation.
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