
Functional Angels and Quality Devils: Incorporating Quality Scenarios
into Functional Scenarios for Software-intensive System Architecture

Publication History:

Received: February 04, 2019
Accepted: April 01, 2019
Published: April 03, 2019

Keywords:

Functional requirement, Non-
functional requirements, Quality
attributes, Use cases, Software
architecture

Research Article Open Access

Introduction

Most nowadays systems are software-intensive, i.e. systems for which
software is a major technical challenge and is perhaps the major factor
that affects system schedule, cost, and risk ‎[1]. As systems become
more complex and distributed, the challenge of architectural design is
increasing, since it requires the consolidation of many requirements
and attributes. There are many definitions for the term software
architecture, but all of them agree that the architecture is the heart
of every system, determining its structural and behavioral principles,
directing and constraining following design and implementation
stages. It is also well perceived that architectural changes to a system,
in later development stages, are the most difficult. Therefore, software
architectural design is critical to the entire system's life-cycle.

A software architecture is designed on the basis of requirement
specifications, which are supposed to define the capabilities and
properties that the system should possess, both functional and
non-functional. Requirement specifications, however, tend to focus
mainly on the system functionality, whereas quality attributes are,
in many cases, expressed in general terms, and sometimes even
being overlooked. Moreover, it is a common practice to define the
set of functional requirements as dynamic scenarios, e.g. use cases
or user stories, whereas its quality attributes (the non-functional
requirements) are defined in static terms, requiring the system to be
safe, secure, available, etc. On the other hand, the impact of quality
attributes on the architecture is much greater than the functional
requirements. For example, all the cars in the world have the same
functionality: carrying a group of people from one location to another.
Cars, however, differ by the way they are architected, e.g. the engine
technology (fuel, electricity or hybrid), the transmission (manual or
automatic), the materials (metal, plastics, etc.), the internal space,

*Corresponding Author: Prof. Amir Tomer, Department of Software Engineering,
Achi Racov School of Engineering, Kinneret Academic College on the Sea of
Galilee, Jordan Valley, Israel; E-mail: tomera@mx.kinneret.ac.il

Citation: Tomer A (2019) Functional Angels and Quality Devils: Incorporating
Quality Scenarios into Functional Scenarios for Software-intensive System
Architecture. Int J Comput Softw Eng 4: 144. doi: https://doi.org/10.15344/2456-
4451/2019/144

Copyright: © 2019 Tomer. This is an open-access article distributed under the
terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author
and source are credited.

comfort, aerodynamic design and more. These are selected according
to the quality attributes expected from the car, such as performance,
safety, usability, availability, cost of operation, etc. Considering quality
attributes during the architectural design process and incorporating
them into the architecture can improve significantly the quality of the
constructed architecture and to increase stakeholders' satisfaction.

In this paper, we introduce a two-phase systematic approach to
software-intensive architecture design, which incorporates both
functional requirements and quality attributes (i.e. non-functional
requirements) into a functional architecture which satisfies both. In
the first stage we show how to systematically derive all the views of an
initial functional architecture from the defined functional scenarios.
In the second phase we revisit the functional scenarios, but now as
"Devil's Advocates"1, investigating cases where the functional scenario
may fail according to an undesired event. These events are directly
related to the violation of quality attributes, such as performance,
availability, security, safety, etc.

International Journal of
Computer & Software Engineering

Amir Tomer
Department of Software Engineering, Achi Racov School of Engineering Kinneret Academic College on the Sea of Galilee Jordan Valley, Israel

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 4. 2019. 144

 Tomer. Int J Comput Softw Eng 2019, 4: 144
 https://doi.org/10.15344/2456-4451/2019/144

Abstract

Software architecture design is intended to propose a software-intensive architectural solution for a
required system. As such, the architecture needs to address all the required functionality while satisfying
all the required quality attributes, which are usually referred to as the non-functional requirements.
Therefore, a major concern of the software architecture is its behavior, besides its structure. Software-
intensive system specifications tend to be functional in nature, focusing on its behavior, i.e. what is
expected to be done by the system, whereas quality attributes, which usually describe other properties
of the system (e.g. performance, availability, safety, etc.) are, in many cases, described in general terms,
and sometimes even being overlooked. The immediate result is that the software architecture, both
behavioral and structural, fails to address quality issues - whose absence is discovered only in late stages
of system verification, validation or operation.

This paper introduces a two-phase process by which a software-intensive architecture is constructed,
satisfying both functional and non-functional requirements. In the first phase an initial architecture is
constructed, comprising its physical, functional, combined and behavioral views. In the second phase
a systematic approach is introduced to discover overlooked quality attributes of a system which might
be violated during its operational (functional) scenarios. In this approach, quality attributes play the
role of "devil's advocates", challenging the functionality by suggesting what can go wrong while the
system performs its functional scenarios. Such challenges yield two results: (1) new "quality scenarios",
which describe how the system should behave in order to prohibit a fault from causing a failure, and (2)
modifications to the entire architecture needed to support the newly-derived functionality.

1In common parlance, the term devil's advocate describes someone who, given a certain
point of view, takes a position he or she does not necessarily agree with (or simply an
alternative position from the accepted norm), for the sake of debate or to explore the
thought further [Wikipedia].

Special Issue: Software Architecture

https://doi.org/10.15344/2456-4451/2019/144
https://doi.org/10.15344/2456-4451/2019/144
https://doi.org/10.15344/2456-4451/2019/143
https://doi.org/10.15344/2456-4451/2019/143
https://doi.org/10.15344/2456-4451/2019/144

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 4. 2019. 144

Our approach is based upon the fact that run-time quality attributes
(i.e. those who may be violated during system operation) occur only
while it is active performing its tasks. More specifically, while the
system is running, something happens (e.g. a server crashes or an
intruder is identified), which might cause the system to fail (i.e. not
being able to accomplish its task as required). Therefore, such an event
causes deviation from the normal functional scenario. The role of
software/system architects is to propose both structural and behavioral
solutions by which such events may be identified and reacted-upon, in
order to prohibit the fault (the undesired event) from causing a failure
(of the entire task). When the system's functionality is challenged by
possible faults, the designers have to react by designing an appropriate
reaction, which will attempt to get the system back on tracks. The
proposed reactions yield two results: (1) new quality scenarios, which
describe the reaction (i.e. how should the system behave in such
cases), and (2) modifications to the structural architecture needed to
support the newly-derived functionality.

In order to explain better and demonstrate our architectural design
process, we are introducing a case study of a Car Navigation System,
using UML (the Unified Modeling Language)2 as the modeling
language for the various views of the architecture. We assume that the
reader is generally familiar with UML, and therefore provided only
brief explanations about the features of the language, when applicable.
The UML diagrams in the various figures have been edited using the
Enterprise Architect software tool (by Sparx Systems3), version 12.1.

The Car Navigation System Case Study

Before we start the introduction and discussion of our proposed
approach and process, we would like to introduce a case study of a
typical popular Car Navigation System (abbreviated CNS).

A CNS is a computerized assistance tool which enables the driver to
navigate along a chosen route from one location to another. A typical
business in which such a system might be installed is a driver with a
car, who usually uses it to apply three main business scenarios:

Planning a trip: determining an origin location and a destination
location and setting up priorities and constrains (e.g. only toll-free
routes);

Navigating along a route: displaying dynamically the route and the
car location on the relevant map section and continuously checking
the relation between the actual and the expected location of the car.
When a significant deviation is indicated, an alternative route is
proposed;

Launching a traffic report: creating and reporting an event, an
obstacle or any other entity (e.g. police), by the driver. Such reports
may be distributed to other relevant drivers.

Not long ago a CNS was a stand-alone instrument, installed in a car,
containing a local map database and satellite communication, which
enabled to apply only the first two business process. As cellular internet
communication developed, typical CNSs turned into a Smartphone
application, which uses the GPS-based location capabilities of the
phone, to locate itself, and external servers who provide geographical
and traffic data, as well as other services (e.g. route calculation,
advertisement, social communication etc.). Therefore, a popular

Citation: Tomer A (2019) Functional Angels and Quality Devils: Incorporating Quality Scenarios into Functional Scenarios for Software-intensive System
Architecture. Int J Comput Softw Eng 4: 144. doi: https://doi.org/10.15344/2456-4451/2019/144

 Page 2 of 17

physical architecture of a CNS is structured as depicted (by a UML
Deployment Diagram) in ‎Figure 1. 3-dimentional boxes represent
physical (hardware) nodes and execution environments within them,
whereas rounded squares with a 'document' icon represent software
artifacts installed within the nodes. The lines between nodes represent
physical links, labeled by their type. The multiplicity (a label of the
form min..max) represent the minimum and maximum instances
of the related entity that must be present in any configuration of the
architecture, where * denotes 'many' (i.e. any integer > 1). Note that
a minimum multiplicity of 0 means that, that node is only optional
(these nodes are shown in white color for clearance).

Usually, an architecture has to be derived from the business needs
and is expected to support them. However, since the smartphone-
based client-server architecture is a popular platform, it may be
considered as generic to many applications. Therefore, we are
assuming here that this physical architecture, along with the business
processes, are the prerequisites for our architectural designed process,
which will be detailed in the following.

Functional and Non-functional Requirements

Types of requirements

System/software requirements are usually divided into two types,
as defined in ‎[2]:

Functional requirements, which are statements of services the
system should provide, how the system should react to particular
inputs, and how the system should behave in particular situations;

Non-functional requirements, which are constraints on the services
or functions offered by the system such as timing constraints,
constraints on the development process, standards, etc.

Both types of requirements affect the design of a system, but they
are usually treated differently. Within the software solution domain,
for example, functional requirements are usually implemented
by functions and interactions (i.e. function calls and responses,
message transfers etc.) within the software application, or between
the application and its external environment. Moreover, each
functionality may usually be spotted at a certain location in the code.
Non-functional requirements, however, are sometimes satisfied by
selecting different implementation of the functions. For example, a
requirement to construct a sorted list from an unsorted one may be
implemented by various sort algorithms, with different complexity -
depending on the required time/space performance constrains.

Non-functional requirements, on the other hand, are often applied
to the system as a whole rather than individual features or services ‎[2].
For example, the response time of a system to a request may depend
on various characteristics of various software components, e.g. the
algorithm, the communication protocol, the structure of the data, the
degree of concurrency, and more.

In many other cases, however, non-functional requirements are
satisfied by applying certain functionality which is expected to provide
the desired resolution. For example, security may be implemented by
encryption, authorization or authentication mechanisms, availability
may be implemented by ping/echo and re-routing mechanisms,
accuracy performance may be implemented by approximation and
compensation algorithms, and so forth. This approach, of turning

2http://www.uml.org
3http://www.sparaxsystems.com

https://doi.org/10.15344/2456-4451/2019/144
http://www.uml.org
http://www.sparaxsystems.com

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 4. 2019. 144

non-functional requirements into corresponding functional
requirements, lies in the heart of the process proposed in this paper.

Non-functional requirements are often Unspoken

In order to design and build a satisfactory system, explicit
requirements are needed. Such requirements are not only the basis
for the system design and implementation but are also the basis
for its verification: Acceptance tests are usually based upon a set of
system requirements which, when satisfied, define a threshold for the
acceptable quality of the system by its client and other stakeholders.
We evident, however, that some characteristics of the system are not
always explicitly communicated by the client or other stakeholders,
although they still exist at their unconscious expectations. Such
expectations might be revealed only after delivery, in validation tests
or in field operation. For example, A user might not explicitly require
an "undo" function, but the first time he or she wants to recover from
a mistake they will notice the absence of such capability. Such implicit
or expected requirements are usually called unspoken (or tacit)
requirements (as described in ‎[3], based upon the "Kano Model" ‎[4]).
Unspoken requirements have two effects:

1.	 They turn down the satisfaction level of the stakeholders, since
the stakeholders consider such features as "must-be quality" ‎[4],
i.e. the system developer should have expected that such a feature
will be needed and should have implemented it, even if it was not
explicitly specified;

2.	 Adding such a feature to the system in late stages of development,
or even after delivered, might be difficult.

The second effect might have significant implications when the
changes needed to support the missing characteristics are in the
underlying architecture. Nevertheless, requirement specifications
usually concentrate on system functionality, while non-functional
requirements often remain unspoken or vague. The "undo" example
falls under the category of system usability - the quality attribute that
makes the system better usable for the user. In many cases this is
expected to be covered by a vague non-functional requirement such
as "the system should be user friendly".

Unfortunately, non-functional requirements affect the entire system
(as mentioned above) and therefore its underlying architecture, which

Citation: Tomer A (2019) Functional Angels and Quality Devils: Incorporating Quality Scenarios into Functional Scenarios for Software-intensive System
Architecture. Int J Comput Softw Eng 4: 144. doi: https://doi.org/10.15344/2456-4451/2019/144

 Page 3 of 17

is usually designed at early development stages, and is difficult to be
changed at later stages. Consider, for example, the case where a client,
who already owns a system, requires to just one feature – that the
system should continuously operate 7 days a week, 24 hours a day. The
immediate solution of duplicating the resources may require further
architectural changes to support data integrity, backup, resource
selection, handoff, etc.

The architectural design process described further in the paper
directly addresses this effect.

Functional Scenarios and Functional Specificaton

Functional Scenarios

The ISO/IEC/IEEE 12207 standard ‎[5] defines the architecture
of a system as fundamental concepts or properties of a system in its
environment embodied in its elements, relationships, and in the
principles of its design and evolution. Although a software-intensive
system architecture is often perceived as a system structure, it cannot
be properly designed without referring to its behavior: Many structural
attributes are derived from the way the system operates, such as which
components need to interact (with each other or with the external
environment), what should be the communication bandwidth, which
functions should be allocated to which system components, etc.
Philippe Kruchten, in his memorable 1995 paper entitled Architectural
Blueprints- The “4+1” View Model of Software Architecture ‎[6] initiated
and inspired the approach that operational scenarios (use-case view)
should be at the center of the software architecture, impacting all its
other views.

Although the operational capabilities of a system are captured in
its functions, the entire functionality of a system is described by its
functional scenarios. Therefore, while a system possesses certain
functions, these functions may be applied in different orders in
order to perform different functional scenarios. For example, an
ATM (Automated Teller Machine) may be capable of performing the
following functions: (a) approve access to a user (b) dispense cash (c)
interact through touch-screen (d) print a slip (e) check user's balance.
However, a cash withdrawal scenario is performed by applying the
(a)→(c)→(e)→(b) sequence of functions, whereas a balance printout

Figure 1: A typical physical architecture of a smartphone-based CNS (format: UML Deployment Diagram).

https://doi.org/10.15344/2456-4451/2019/144

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 4. 2019. 144

scenario is performed by applying a different sequence, namely
(a)→(e)→(d). Moreover, while every function yields a specific result,
the results (goals) achieved by the first scenario are obviously different
from the results achieved by the second one.

In this view we may define a functional scenario as a sequence
of function applications executed to achieve one or more goals. The
functions are applied throughout possible interaction of the system
(e.g. the ATM) with its external environment (e.g. the human user, the
bank's database server).

Since software-intensive systems are interactive and dynamic
in nature, functional specifications are usually defined in a form of
scenarios. One example is the user stories approach, used in agile
software development processes, as defined, for example, in ‎[7]: A
user story is a very high-level definition of a requirement, containing
just enough information so that the developers can produce a reasonable
estimate of the effort to implement it. User stories are often written in the
form of "As a (role) I want (something) so that (benefit)", as suggested
by Mike Cohn ‎[8]. A more detailed form of functional scenarios is
use cases, which will be described in detail in the following.

When writing functional scenarios, it is possible to perceive
the system as a black box, i.e. without specifying upfront its set of
basic capabilities (functions). However, when these scenarios are
implemented by the developers it is expected that they know which
functions are already available for them, and to reuse these functions;
new functions should be added to the system only when there is no
function readily available to use. Thus, any functional scenario should
be analyzed prior to its implementation to reveal the functions need
to implement it. Moreover, since each function is executed at the
responsibility of a certain component of the system, implementors

Citation: Tomer A (2019) Functional Angels and Quality Devils: Incorporating Quality Scenarios into Functional Scenarios for Software-intensive System
Architecture. Int J Comput Softw Eng 4: 144. doi: https://doi.org/10.15344/2456-4451/2019/144

 Page 4 of 17

should be aware of the system architecture, from which they
learn about the "cost" of applying such a function, in terms of
communication, computation and storage resources. The process
of revealing the required system functionality and relate it to the
architecture is described later as the process of functional analysis.

Non-functional requirements, as mentioned above, usually
constrain the way the functionality is implemented. At this stage
of requirement specification, it is not necessary to get into the
implementation details, and therefore the relevant non-functional
requirements may be just related to the scenarios, deferring their
addressing to the implementation stage. Nevertheless, there are two
pitfalls in this decision:

1.	 Some non-functional requirements have architectural impact,
which we should be addressed as principle decisions, guiding the
detailed implementation. For example, an availability issues may
be resolved by using duplicate servers, which backup each other,
instead of a single one.

2.	 Some non-functional requirements are tacit (unspoken) and
therefore might be overlooked. Revealing them at the final
system tests or after deployment may cause costly repair or even
re-design. Later in this paper we will show how to reveal those
unspoken requirements as early as possible.

As mentioned above, a more formal way to write functional
scenarios is use cases (e.g. ‎[9,10]), which will be described next.

Use cases diagrams

The entire set of a system's use cases capture its functionality as a
set of scenarios, each of which is interpreted as "one case for using the

Figure 2: Use Case Diagram of a Car Navigation System (CNS).

https://doi.org/10.15344/2456-4451/2019/144

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 4. 2019. 144

system". Use cases may be specified at various levels, e.g. as business
processes at the business level, as system processes at the system
level, as internal processes at a subsystem or component level, etc.
Although in this paper we will refer to system-level use cases, i.e. the
processes performed by the system as a whole during its operation,
it should be noted that these system level use cases are derived from
the business level ones. The detailed description and discussion of the
derivation method is beyond this paper, but as an illustrative example
we may look at the business process 'using an elevator' which may
be broken down into two system-level processes: 'calling an elevator'
and 'travelling by elevator'. Although these two processes comprise
the using of an elevator, for the purpose of getting from one floor to
another, they are independent upon each other, since a user may call
an elevator without travelling, or travel by an elevator without calling
it (e.g. by joining an already-travelling elevator).

The set of use cases of a certain system may be reflected in two
views:

1.	 The global view, which shows the relation between the set of
use cases (implemented within the system itself) and the set of
external entities (called actors), with which the system interacts
during its operation;

2.	 The individual view, which addresses each use case separately by
a detailed use case specification.

The two views are dependent upon each other, since the behavior of
any single use case may affect the entire set, and vice versa. Therefore,
it is always a debate which view should be generated first. For the
brevity of the following we start with the global view, by using the
commonly-used model of UML Use Case Diagram.

‎Figure 2 describes the system-level use case diagram, which depicts
the global view of the entire set of system use cases. It should be
noted that the main three aforementioned business-level scenarios,
namely 'Planning a Trip', 'Navigating along Route' and 'Sending a
Report' are replaced here by corresponding system-level use cases,
complemented with other uses cases related to them by <<include>>
and <<extend>> dependencies (labeled dashed arrows). The formal
meaning of these dependencies is not discussed here, but informally
they may be interpreted as follows:

1.	 A <<include>> B, if use case B is always executed during the
execution of A, at a specified inclusion point;

2.	 B <<extend>> A, if use case B is optionally executed during
the execution of A, subject to the occurrence of an event or
condition at a specified extension point.

The squared frame (bearing the title of the system) denotes the
system boundary, i.e. the border between the internals of the system
(use cases, denoted as ellipses) and its external entities (actors, denoted
as stick-figures). When an actor is connected by a line to a use case
it denotes that that actor interacts with this use case. When the line
is arrowed, it denotes that that actor may initiate the use case. In this
example we chose, for brevity, a system configuration (see ‎Figure 1) in
which the optional nodes (i.e. the radio audio and the maps and reports
providers) are not present. Therefore, the Driver is the initiator of the
main use cases whereas the GPS Satellite is a supporting actor for
the Locate Self use case (which appear to be included in all other use
cases). Also note that the Calculate Route use case is included in Plan
Trip, since it is always performed there, but it extends Navigate along
Route, since it is invoked only at the event of deviation from the route.

Citation: Tomer A (2019) Functional Angels and Quality Devils: Incorporating Quality Scenarios into Functional Scenarios for Software-intensive System
Architecture. Int J Comput Softw Eng 4: 144. doi: https://doi.org/10.15344/2456-4451/2019/144

 Page 5 of 17

Use case specifications

1.	 Any use case has a use case specification which includes the
following elements:

2.	 Actors. An actor is any entity, external to the system, which
directly interacts with the system. There are two types of actors:

3.	 Other Stakeholders. A stakeholder (of a specific use case) is
any entity who may affect the execution of the use case or may
be affected by it. Actors, naturally, are stakeholders, since their
interaction with the system affect the execution of the use case
and they benefit from it. Other stakeholders are those who do not
interact with the system during a use case, but they have certain
interests in the execution or in the results of the use case. A
typical example is a safety regulator that requires that the system
will preserve the health of its user during the execution of a use
case. A more specific example is the bank owners, who require
that an ATM will collect a fee while performing a withdrawal use
case initiated by a user.

It should be noted that stakeholders, who are not actors, have no
graphical representation in UML's use case diagram. The architect
must, therefore, take care of their definition in another way.

Note that a use case is considered successful only from the actors'
and stakeholders' viewpoint, and not from the system's viewpoint;
the system must perform successfully in both "successful" and
"unsuccessful" (or "failure") results. For example, the system should
successfully fail a withdrawal use case when the user's balance is
insufficient.

1.	 A primary (an initiating) actor - which initiates one or more use
cases, in order to achieve a goal; Not every use case needs to have
primary actors – a use case is sometimes initiated according to
an internal event or condition within the system. For example,
an internal BIT (Built-in-Test) is automatically performed
periodically, without any external trigger. A use case without
primary actor may be called spontaneous.

2.	 A supporting actor - which is initiated during one or more use
cases upon system's request. A supporting actor has no specific
goal to be achieved through this interaction, rather than assisting
the system in achieving the primary actor's goal.

4.	 Preconditions. Preconditions are logical assertions that must
be satisfied in order for the use case to be able to execute.
Preconditions are not checked as part of the use case, but
without their existence the use case might not have meaning. For
example, a user cannot execute a travel in an elevator if an open
elevator is not available at her current floor. The precondition
'an open elevator is available at the floor' may be satisfied either
by calling an elevator, prior to traveling, or when an elevator
stopped at the floor as a result of another user's 'travel' use case.

5.	 Post-conditions. Post conditions are logical assertions which
must be satisfied upon the completion of a use case, in order to
define its "success". A use case is considered successful when (a)
the primary actor's goal has been achieved and (b) when all the
interests of the other stakeholders has been fulfilled. For example,
a withdrawal use case of an ATM is successful only when the user
(the primary actor) possesses the amount of money requested,
and her account shows a debit for that amount + withdrawal fee,
for the interest of the bank owners.

https://doi.org/10.15344/2456-4451/2019/144

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 4. 2019. 144

The MSS (as all other scenarios in the following) is a single-track
numbered sequence of steps describing the interactions between the
system and the use case's actors (both primary and supporting). Each
of these steps describes a single action performed either by an actor
or by the system. Naturally, the first step describes the reaction of the
system to the trigger. As described above, each step involves either the
application of one or more of the system's functions (when the step is
performed by the system) or an input/output function (when the step
is performed by an actor).

The steps of the MSS are describes in a "success-oriented" fashion,
i.e. they are deterministic and express only the positive conditions,
under which the scenario may proceed successfully. For example,
after the user entered her PIN to the ATM, the system's step should
not be 'the system checks the PIN' but rather 'the system approves the
PIN'. The first one is nondeterministic and causes the MSS to split into
a two-track sequence, whereas the second one, if succeeds, enables the
MSS to continue in its single-track sequence. If the step fails (e.g. the
PIN was not approved) the MSS is discontinued. If there is a branch
(see next) that specifies the case when this failure condition occurs, it
will continue the scenario.

Citation: Tomer A (2019) Functional Angels and Quality Devils: Incorporating Quality Scenarios into Functional Scenarios for Software-intensive System
Architecture. Int J Comput Softw Eng 4: 144. doi: https://doi.org/10.15344/2456-4451/2019/144

 Page 6 of 17

Branches are scenarios of their own, i.e. they are also specified as
sequences of interactive steps. Their numbering may me derived from
the original sequence. E.g. steps numbered 6A1, 6A2, etc, specify the
set of the steps of branch A, deviated from step 6 of the MSS, whereas
steps numbered 6A3B1, 6A3B2, etc, specify the set of the steps of
Branch B, deviated from step 6A3 of Branch A.

Branches may be categorized into two types:

1.	 Alternative - a branch whose sequence of steps would lead to
"success" (i.e. all post-conditions satisfied);

2.	 Exception - a branch whose sequence of steps would lead to
"failure" (i.e. not all post-conditions satisfied).

This categorization plays a crucial role in the quality scenarios,
which will be described in the following.

‎Figure 3 below Describes the "Navigate along Route" use case which
appears in the use case diagram of ‎Figure 2 (the underscored text is
explained later).

6.	 Trigger. Trigger is the event that initiates the use case. The
trigger is caused by either a primary actor or by the system itself
(when the use case is spontaneous). In many cases the trigger
may be caused subject to given pre-conditions; in such a case the
meaning is that the trigger event cannot occur at all. For example,
submitting a registration form to a site can be performed only if
the "submit" button is displayed and enabled.

7.	 Main Success Scenario (MSS). The main success scenario
is the shortest and most straightforward way to go from the
trigger to the successful completion of the use case (i.e. when
all the primary user's goals have been achieved and all the other
stakeholders' interests have been fulfilled).

Figure 3 : The Navigate along Route use case specification.

8.	 Branches. Branches are deviations from the MSS (or from other
branches) which may be caused when the original scenario
cannot perform a certain step. Each branch should specify its
entry condition in terms of location (i.e. in which step of the
original scenario) and condition (i.e. what happened in the
original scenario). Regarding the previous example, a branch
specifying the sequence of actions to be performed when the
PIN in not approved, will be forwarded by a sentence of the form
'in step N of the MSS – the PIN was not approved'.

https://doi.org/10.15344/2456-4451/2019/144

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 4. 2019. 144

Functional Analysis and Functional Architecture

Functional Analysis

As mentioned above, from the system’s point of view, a functional
scenario is a sequence of function applications. Since these functions
should be implemented by functional components (e.g. software
modules), we first need to identify the required functions, reflected in
the functional scenarios, and check whether this function is contained
within the existing architecture. If not, the function should be allocated
to a component or propose a change in the existing architecture by
introducing a new functional component and integrate it into the
architecture. If no architecture exists yet, an initial one may built, by
proposing a set of initial functional components, collecting all the
required functions from all the use cases, and allocating them to these
components.

Functional Analysis is the process described above, and is defined in
ISO/IEC/IEEE 24765:2010 ‎[11] as follows:

"Examination of a defined function to identify all the subfunctions
necessary to accomplish that function, to identify functional
relationships and interfaces (internal and external) and capture these
in a functional architecture, to flow down upper-level performance
requirements and to assign these requirements to lower-level
subfunctions"

We have highlighted some of the terms, in order to interpret them
in view of our use-case-based approach, as follows:

1.	 Defined functions are the use cases themselves: each use case is
actually a service (high-level defined function) of the system;

2.	 Subfunctions are the functions that the system should apply while
executing a use case. These can be identified in the trigger(s) and
in all the steps of both the MSS and all the branches of the use
case. In the use case specification in ‎Figure 3 the subfunctions,
which should be implemented in the system, are marked with a
single underscore, whereas the user inputs, to which the system
have to respond, are marked with a double underscore. Once
identified, these functions need to be assigned to functional
components;

3.	 Functional relationships and interfaces comprise the structural
view of the functional architecture, which is constructed from a
set of chosen functional components, to which the subfunctions
are assigned. Functional architecture is explained in Subsection
below.

4.	 Upper-level performance requirements refer to the non-
functional (quality) requirements, which are expected from the
use case, and their assignment to the lower level subfunctions is
the concern of following Sections.

Functional Architecture

A functional architecture is the set of functional components, their
assigned functions and their internal and external interface. The
entire architecture of a software-intensive system may be reflected in
four views ‎[12]:

1.	 The physical structure view: The physical (hardware)
components and their physical communication links. This
view may be modelled as a UML Deployment Diagram, as
shown, for example, in ‎Figure 1;

Citation: Tomer A (2019) Functional Angels and Quality Devils: Incorporating Quality Scenarios into Functional Scenarios for Software-intensive System
Architecture. Int J Comput Softw Eng 4: 144. doi: https://doi.org/10.15344/2456-4451/2019/144

 Page 7 of 17

2.	 The functional structure view: The set of functional components,
identified in the interaction view with their internal and external
interfaces. This view may be modelled as a UML Component
Diagram, as will be shown below;

3.	 The combined structure view: The allocation of functional
components to physical components and the mapping between
functional and physical interfaces. This view may be modelled as
a UML Composite Diagram.

4.	 The interaction view: The implementation of the use cases as
interactions among a set of functional components, either with
each other or with the external environment. This view may be
modelled as a set of UML sequence diagrams;

The term functional architecture discussed here refers mainly to the
functional structure view.

It is directly implied that the interaction view and the functional
structure view are tightly coupled, since they both refer to the
same set of functional components. Furthermore, according to the
functional analysis process described above, this interrelationship
has the "chicken and egg" effect: functions are to be assigned to
functional components and functional components are built in
order to implement function. When a system is initially built "from
scratch" it can start with an initial selection of functional components,
constructed by grouping all the subfunctions identified in the use
cases into (highly cohesive) function groups - each of which defines an
initial functional component. The implementation of the upper-level
functions (i.e. the use cases) is then may be designed, comprising the
interaction view. The interfaces among the functional components,
and between functional components and the external environment,
is directly derived from the components' interaction needs (i.e. two
components need a functional interface if and only if they have to
interact with each other).

In this paper we do not explicitly detail the construction of the
interaction view; we rather intuitively define a set of functional
components, based on the functions identified in the use cases.
These components correspond to the software artifacts shown
in ‎Figure 1 (except that the two DBs are considered as a single
functional component (Map Services). Consider, for example, the
set of (underscored) functions in ‎Figure 3, and assume that similar
function-identification has been performed over the entire set of use
cases of this case-study. The result might be a functional structure
view (UML Component Diagram) as shown in ‎Figure 4, and the list of
components and their assigned functions from use case #2 are shown
in table 1 . When a component requires a service (i.e. call a function)
from another component, it uses its appropriate required interface (a
short line with a half-circle at its end). When a component enables
other components to use its services (respond to a function call) it
exposes a provided interface (a short line with a full circle at its end).
Interaction between components is performed, therefore, through a
pair of required-provided interfaces. "Free" interfaces, which are not
paired with others, denote interaction with the external environment.

The dashed arrow between the Map Requests pair of interfaces
denotes that the specification of the (provided) interface is determined
by the Map Services component (which resides on the server side) and
the (required) interface on the Navigation App side depends upon
it (i.e. needs to be adapted accordingly). The note "static binding"
specifies the binding strategy between these pair of components;
binding strategies will be elaborated later.

https://doi.org/10.15344/2456-4451/2019/144

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 4. 2019. 144

The physical architecture view (‎Figure 1) and the functional
architecture view (‎Figure 4) must be consistent with each other. This
is depicted in the combined architecture view (‎Figure 5), which shows
how the components of the functional architecture are deployed onto
the nodes of the physical components. If two components interact
within the same node, they may maintain their existing interfaces.
However, when the interaction is performed over physical links, the
functional interface must be delegated to/from communication ports,
which enable the physical communication. ‎Figure 5 below shows
the combined architecture view of the CNS in the form of a UML
Composite Diagram. Note that the nodes of the physical architecture4
are denoted here as parts (rectangles) equipped with ports (small
squares on the parts' circumferences), indicating the ends of physical
links. Cross-node and external functional interface are related to
corresponding ports with <<delegate>> relation.

Part of the interaction view, which implements use case #2 as an
interaction between the functional components, is shown in ‎Figure
6 as a UML Sequence Diagram. Note that the messages marked 1.xx
denote the steps of the trigger+MSS, whereas the messages marked
2.xx denote the steps of Branch A.

Citation: Tomer A (2019) Functional Angels and Quality Devils: Incorporating Quality Scenarios into Functional Scenarios for Software-intensive System
Architecture. Int J Comput Softw Eng 4: 144. doi: https://doi.org/10.15344/2456-4451/2019/144

 Page 8 of 17

Up to this stage we have dealt only with the functional requirements,
as reflected in the functional scenarios, i.e. the use cases. Next, we will
introduce the quality attributes (non-functional requirements) and
show how they might impact the functional architecture.

Quality Attributes and Quality Scenarios

Run-time quality attributes

The quality of a system is the degree to which the system satisfies the
stated and implied needs of its various stakeholders, and thus provides
value. This definition is cited from the ISO 25010:2011 standard
‎[13], which defines a quality model for (software-intensive) systems,
enlisting the specific characteristics that should be possessed by a
system in order to assure its quality. These characteristics are often
referred to as quality attributes. According to this standard there are
eight quality attributes, which are further decomposed into more
specific sub-attributes, as shown in table 2. However, the impact
of these attributes and sub-attributes on a system differs in two
significant aspects, which leads to divide them into two categories:

Component Assigned Functions Required interface useda

Locator Get current location GPS Signals

GUI (respond to) “Go” button pressed User Commands

(respond to) "Cancel" key pressed User Commands

Display map and route User Displays

'navigation' mode request Commands

Navigation App Enter 'navigation' mode

Retrieve the existing route

Map data request (request) Map Requests

Re-calculate the route

Stop Navigation (exit 'navigation' mode)

Map Services (respond to) a map data request
Table 1: Functional components and their assigned functions.
aAn interface is used only when interaction with another component is required

Figure 4: A proposed functional architecture for the CNS case-study (format: UML Composite Diagram).

4The <<execution environment>> blocks are not shown, for brevity.

https://doi.org/10.15344/2456-4451/2019/144

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 4. 2019. 144

Citation: Tomer A (2019) Functional Angels and Quality Devils: Incorporating Quality Scenarios into Functional Scenarios for Software-intensive System
Architecture. Int J Comput Softw Eng 4: 144. doi: https://doi.org/10.15344/2456-4451/2019/144

 Page 9 of 17

Figure 5: The combined architecture view of CNS (Format: UML Composite Diagram).

Figure 6: Implementation of use case #2 as an interaction among the components of the functional architecture (Format: UML Sequence Diagram).

https://doi.org/10.15344/2456-4451/2019/144

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 4. 2019. 144

1.	 Those who affect the way the system behaves and responses to
various events during its operation;

2.	 Those who affect the (architectural) design of a system, by
imposing an architecture which should satisfy them.

We refer here to attributes of the first kind as run-time attributes,
whereas the second kind will be denoted here as design-time attributes.
Accordingly, we have divided the sub-attributes in table 2 into these
categories.

This categorization requires further explanation: Run-time
attributes actually define situations that may or may not happen while
it is operating. Time behaviour (under performance efficiency), for
example, may be maintained during most of the system operation, but
also might be violated at peak times. Considering this quality attribute
(non-functional requirement) may impose changes in the system
behaviour, e.g. how to recognize time-behaviour violation, how to
respond to it and how to recover from it. In other words, additional
functionality should be incorporated into the system, regarding
quality attributes. In the following Sections we suggest how to address
this issue. Needless to mention that an inoperable system never faces
time behaviour violations.

Design-time attributes are addressed when the system undergoes
development stages, either at initial development or during
maintenance cycles. Adaptability (under Portability), for example, does
not affect the functionality of the system (i.e. what should the system
do), but it rather impacts the way this functionality is implemented, in
order to enable its adaptation to various environments in the future.

Citation: Tomer A (2019) Functional Angels and Quality Devils: Incorporating Quality Scenarios into Functional Scenarios for Software-intensive System
Architecture. Int J Comput Softw Eng 4: 144. doi: https://doi.org/10.15344/2456-4451/2019/144

 Page 10 of 17

In the scope of this paper, we refer only to run-time quality attributes,
since, as shown in the following, they have significant effects on the
operational scenarios (use cases) of the system.

Quality Scenarios as use cases

Since quality attributes have significant influence on system
behaviour, there is a natural relationship between them and the
functional scenarios. Suggestions for such relationships appear in
other works, such as ‎[14-16] and more. In this work we take this idea
one step further, and incorporate quality scenarios directly into the
use cases, to create a single unified functional model. In order to do
so, we start with quality scenarios on their own, mapping them later
into our use-case specifications.

Bass, Clements and Kazman ‎[17] provided a format for quality
attribute scenarios, containing six parts, as follows:

1.	 Stimulus is an event that happens during system operation,
indicating violation of a quality attributes. Examples may include
loss of communication (violating availability), an attempt to
access confidential material (violating security) or memory
overflow (violating resource utilization);

2.	 Environment (or context) is the configuration or circumstances
under which the stimulus may occur (e.g. in maintenance
configuration, when the system is on-line);

3.	 Stimulus source is the entity which initiates the stimulus. This
entity may be external to the system (e.g. a user, a remote
computer) or the system itself (e.g. by throwing an exception,
raising a flag or invoking a watchdog);

Quality Attribute Run-time sub-attributes Design-time sub-attributes

Functional Suitability Functional Completeness
Functional Correctness
Functional Appropriateness

Performance
Efficiency

Time behaviour
Resource Utilization
Capacity

Compatibility Interoperability Co-existence

Usability Appropriateness
Recognizability
Operability
User Error Protection
Accessibility

Learnability
User Interface Aesthetics

Reliability Availability
Fault Tolerance
Recoverability

Maturity

Security Confidentiality
Integrity
Non-repudiation
Authenticity
Accountability

Maintainability Modularity
Reusability
Analysability
Modifiability
Testability

Portability Adaptability
Installability
Replaceability

Table 2: Quality Attributes and Sub-Attributes.

https://doi.org/10.15344/2456-4451/2019/144

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 4. 2019. 144

4.	 Artifact(s) are the parts of the system (including the system as a
whole) affected by the stimulus (e.g. CPU, disk, communication
channel);

5.	 Response describes the course of actions the system performs
when a stimulus occurs. Part of the response should be the
indication that a response happens (e.g. catching the thrown
exception, checking the status of a flag). The following steps may
include various action, such as disabling the stimulus source,
repairing the damage, if incurred, or recovering and getting back
to normal operation;

6.	 Response measure is the means by which it can be decided
whether the response was satisfactory (e.g. how long did it take
the system to get back to "normal" pace).

In simpler words, the stimulus described a fault that has happened
to the system during it operation. Such a fault may cause the system
to fail (e.g. stop working, lose data), by not providing its expected
service, or not. The purpose of the response is to prohibit a fault from
becoming a failure. The entire quality scenario may, therefore, be
described as a sequence of actions, as follows:

In a certain environment…
 a stimulus source generates…
 a stimulus, which affects…
 artifacts of the system. Then…
 the system initiates a response…
 whose success is evaluated by response measures.

Although described as scenarios, it should be noted that, unlike
functional scenarios, quality scenarios are not initiated by themselves,
but rather start off during functional scenarios. An intruder, for
example, is not a different actor from a regular user. Moreover, an
intruder tries to make the system believe that he is a regular user, by
logging in and gaining accessibility to data and processes; It is the
system's security mechanism who indicates that a user might be an
intruder and respond accordingly. The fault is, therefore, the existence
of an intruder. The eventual failure might be, for example, stealth of
confidential data. The system response is an attempt to prevent the
fault to become a failure.

A loss of GPS connection, for another example, is a fault that may
cause the failure of the driver's goal to arrive at her destination. The
system may employ a variety of responses, such as attempting to
re-establish communication, choose another location service (e.g.
triangulation between cellular antennas or a prediction model), or
even try to restart the application in attempt to recover from the
undesired situation.

Citation: Tomer A (2019) Functional Angels and Quality Devils: Incorporating Quality Scenarios into Functional Scenarios for Software-intensive System
Architecture. Int J Comput Softw Eng 4: 144. doi: https://doi.org/10.15344/2456-4451/2019/144

 Page 11 of 17

The actions taken by the system during its responses provide, in
fact, additional functionality, i.e. the system now has two types of
functional behaviour:

1.	 The actions it has to execute, in order to accomplish its tasks,
which are directly derived from functional requirements, and

2.	 The actions it has to execute as a response to stimuli (faults), which
are indirectly concluded from non-functional requirements.

The first type of functional behaviour may be captured in functional
scenarios, written as use cases (as described above). Since the (run-
time) quality scenarios appear to be functional in nature, there is a
good reason to write them in the same format. Bachman ‎[18] already
shown that quality scenarios can be written in use case format.
However, in that approach, quality scenarios are written as separate
use cases. Therefore, we chose to map the quality attribute format
shown above directly into our use-case specification format, in order
to enable to convert explicit quality scenarios, written separately, into
use cases, or parts of them.

In the mapping between quality scenarios and use cases we
distinguished between three cases:

1.	 The quality scenario is an independent use case of its own. For
example, responding to an 'emergency' signal arriving from a
button pushed by a user, at any time;

2.	 The quality scenario is a separate use case, extending an
existing use case (with <<extend>> dependency). For example,
responding to a 'too close' signal arriving from a proximity
sensor, while reversing the car;

3.	 The quality scenario is a branch within an existing use case. For
example, responding to an unapproved PIN, while the user is
trying to withdraw money from an ATM.

Table 3, 4 and table 5 below show the mapping between the parts
of a quality scenario onto the corresponding parts of a use case, in
these three cases. The Artifact part in all three cases is the system, as
defined by the boundary frame in the use-case diagram, depending
on the level of the use-case specification (i.e. system, sub-system, etc.).
Therefore, we excluded it from the tables.

Using this mapping, quality scenarios (driven by non-functional
requirements) can be incorporated into the functional scenarios,
yielding a unified functional specification in use-case format. This
is useful when the quality attributes and their specific responses
are explicitly defined. Consider, for example, the UC#2: Navigation
along Route use case. This use case already contains two responses to
situations related to quality attributes, as follows:

Quality scenario part Use case part Comments

Environment (context) Pre-conditions The configuration, or situation, under which certain stimuli may occur

Stimulus Source A primary actor

Stimulus Trigger The trigger is caused by a primary actor which initiates a Main Success
Scenario (MSS)

Response The MSS following the trigger, and any
sub-scenarios branching from it

Response measurement Post-conditions Satisfying the post conditions means success. It can be tuned more
quantitatively, by specifying an explicit degree of post-condition
satisfaction.

Table 3: Mapping between quality scenarios ‎[17] and use cases – case (a).

https://doi.org/10.15344/2456-4451/2019/144

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 4. 2019. 144

1.	 Step 7 of the MSS deals with the case where the location of the
vehicle is off route – a violation of the Functional Completeness
(under Functional Suitability) attribute. This condition (the
stimulus), which comes spontaneously from the system itself
(the stimulus source), implies, as a response, the invocation of
an extending use case, namely UC#4: Calculate Route. If UC#4
will terminate normally, UC#2 will continue, However, if UC#4
will terminate abnormally (e.g. the route cannot be calculated),
UC#2 will also terminate, leaving the post-condition ('car arrived
at destination') unsatisfied. The success/fail result is the response
measure.

2.	 Branch A of UC#2: Navigate in Route responds to the violation of
the Operability (under Usability) quality attribute (the driver has
no control over the navigation process). In this case the response
is implemented as a branch, where the exception point could be
any step in the MSS, and the event causing the exception is the
'cancel' button pressed. It should be noted that while the driver
deliberately pressed 'cancel' it causes the task to fail (i.e. violating
the post-condition of arrival to destination).

The greater problem, however, arises when quality attributes are
expressed only generally (e.g. "the system should be user-friendly")
or even stay as unspoken expectations (e.g. the system is naturally
expected to be user-friendly).

Citation: Tomer A (2019) Functional Angels and Quality Devils: Incorporating Quality Scenarios into Functional Scenarios for Software-intensive System
Architecture. Int J Comput Softw Eng 4: 144. doi: https://doi.org/10.15344/2456-4451/2019/144

 Page 12 of 17

Applying quality attributes to use case scenarios

As already mentioned, (run-time) quality attributes should often
be considered when undesired circumstances occur while the system
is performing its tasks. It was also mentioned that while functional
requirements define what the system has to do (i.e. apply functions in
a sequence of steps), non-functional requirements define how well the
system accomplishes its tasks. Therefore, we suggest to explicitly ask
"How well?" questions about the functions used during a functional
scenario5.

As an example, consider again the MSS functional scenarios
of UC#2: Navigation along Route. During the functional analysis
process, as defined above, we defined the underlined functions
and assigned them to functional components. Now we go back to
investigate those functions in view of quality issues. For example, the
function "enter 'navigation' mode" may be asked "is the driver aware
of the mode change"? - a question which is related to the Usability
quality attribute. Step 4 of the MSS of UC#2 applies the function
"download map data from the server". The following question directly
relates to Availability: "does the server respond within TBD seconds?".

"How well?" questions not only highlight specific situations to which
a quality attribute applies, but rather help to reveal a related quality

Quality scenario part Use case part Comments

Environment (context) An exception point in the extended use case

Stimulus Source Internal (the system itself) or external (a
primary actor)

Stimulus The event that satisfies the condition in the
exception point

Response The MSS of the extending use case and any
sub-scenarios branching from it

Response measurement Post-conditions If the extending use case returns to the extended use case upon completion,
then the results are implied by the post-conditions of the extending use
case. Other wise – by the post-conditions of the extending use case

Table 4: Mapping between quality scenatios ‎[17] and use cases - case (b).

Quality scenario part Use case part Comments

Environment (context) While executing the existing use case

Stimulus Source Internal

Stimulus A violated condition in the current sequence of
actions, which causes the scenario to "skip" to a
branch.

Response Sequence of steps in either an MSS or a branch The branch may be one of the following:
a) An alternative, which leads to successful completion
of the use case. This happens when the system managed
to prevent the fault from becoming a failure;
b) An exception, which describes an attempt of the
system to prevent the failure but leads to unsuccessful
completion of the use case.

Response measurement Post-conditions a) An alternative leads to satisfied post-conditions,
indicating success
b) An exception leads to unsatisfied post-conditions,
which indicate failure

Table 5: Mapping between quality scenatios ‎[17] and use cases - case (c).

5"How well?" questions may also interpret as "Does anything can go wrong?", following a
version of the famous Murphey's law – If anything can go wrong – it will!

https://doi.org/10.15344/2456-4451/2019/144

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 4. 2019. 144

attributes, which were not explicitly specified or implied, as indirect
consequence from other requirements. Suppose, in the same example,
that there is a requirement for continuous/smooth display of the
way in front of the driver. Missing map data may cause a delay in
the display, which makes the navigation application unavailable to the
driver for a while. Availability, in this case, is indirectly implied from
a display issue. In many cases it is not easy to derive such a conclusion
from the quality attribute itself; The question asked here referred to a
specific situation and revealed immediately the availability issue.

Once the question asked, it points at a potential stimulus ('map
data is not downloaded'). The stimulus source, in this case, is not
external, but rather the system itself which indicates (e.g. by a time-
out mechanism) that the server is unavailable. The natural response,
then, is to generate a branch, which will be performed when this event
occurs. Specifically, a new step (say 4.1) might be inserted between
step 4 and 5 in the MSS as follows: "The system verifies that the map
data is provided within TBD seconds". In addition, a new branch (say
Branch B) should be added to the use case, such as an alternative
(or an exception) from step 4.1 of the MSS: "The map data was not
provided within TBD seconds".

However, this is just the beginning, since the following issues
should now be considered:

1.	 What should the system do now?
2.	 Is this branch an alternative (i.e. leading to task success) or an

exception (leading to task failure)?
3.	 If new functionality is added, which components should be

assigned the new functions?

Citation: Tomer A (2019) Functional Angels and Quality Devils: Incorporating Quality Scenarios into Functional Scenarios for Software-intensive System
Architecture. Int J Comput Softw Eng 4: 144. doi: https://doi.org/10.15344/2456-4451/2019/144

 Page 13 of 17

The decision of what the system should do depends on the quality
tactic chosen. Quality tactics are systematic actions taken to resolve
quality attribute issues, and are proposed by several sources, such as
‎[17,19,20] and more. Choosing the most appropriate tactic is at the
discretion of the architecture team, based on considerations beyond
this discussion. In the scope of this paper we assume that a tactic was
chosen, and we elaborate only on the implications of this choice. One
of the most popular availability tactics is redundancy, i.e. the system
maintains a set of alternative resources, such that if any resource
becomes unavailable, the system invokes an alternative resource to
provide the required service.

Applying the redundancy tactics to our example means that the
system should maintain multiple map data servers, and when one is
unavailable it will reroute the service to a different one. If there are
enough alternative servers, the eventual unavailability of all of them
together is statistically negligible, so the system may go back to the
MSS and continue the task. This means that the proposed branch is
to be classified as 'alternative', since it prevented the fault (no data
available) from becoming a failure (the driver will lose her way).
The above is summarized in the new version of UC#2: Navigation
along Route, as depicted in ‎Figure 7 below, with the modification
highlighted.

The new functions, namely "Verify that the map data is provided
within TBD seconds" and "propose an alternative server", should now
be assigned to functional components of the architecture. Moreover,
the architecture might be modified in order to reflect the server
redundancy. The architectural modifications and their implications
are detailed next.

Figure 7: A modified version (modifications highlighted) of the Navigate along Route use case specification

https://doi.org/10.15344/2456-4451/2019/144

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 4. 2019. 144

Architectural Modifications for Satisfying Quality Scenarios

Applying the new functionality to the functional architecture

The architecture is the platform that supports the system behaviour.
Above we described the process of constructing an architecture on
the basis of the functional specifications. As we saw in the previous
Section, resolving quality attribute issues may impose additional
functionality on the system. Since the functionality is directed
to the architecture by assigning the new functions to functional
components, the architecture should be re-addressed, and if the
current set of functional components cannot (or should not) support
the new functions, new components (and their interfaces) should
be added. Moreover, the chosen tactics (e.g. resource redundancy)
may impose further changes to the structural architecture. The new
functionality, together with the modified set of components may also
require modifications to the system's behaviour (i.e. the interactions
of components between each other or with the external environment).
This means that the entire architecture should now be modified
accordingly. We demonstrate the architecture modification process
on the basis of our CNS case study.

The first step is the functional assignment. Consider the set of
functional components comprising the CNS functional architecture
shown in ‎Figure 4. The new function "Verify that the map data is
provided within TBD seconds" may be naturally assigned to the
Navigation App component, which, while sending a map request
to the Map Service component may set a watchdog, which will
track the request and will raise a timeout flag when the request is
not answered within the allocated time. Nevertheless, the "propose
an alternative server" function cannot be easily assigned to the
Map Services component, since, in the current architecture, this
component comprises a single source of data, without redundancy.
If this component is now duplicated, proposing an alternative server
should be allocated to a different component, who "knows" all the
Map Services. A common architecture pattern for such a situation
is the Broker pattern ‎[21]. A broker is a mediator between service
consumers and service providers. The broker does not provide any
service by its own, but it maintains a list of registered service providers.

Citation: Tomer A (2019) Functional Angels and Quality Devils: Incorporating Quality Scenarios into Functional Scenarios for Software-intensive System
Architecture. Int J Comput Softw Eng 4: 144. doi: https://doi.org/10.15344/2456-4451/2019/144

 Page 14 of 17

When a consumer needs a service, it requests the broker, who provides
the address of one of its registered service providers. The consumer
can now connect directly to this provider and request the service. This
is naturally analogous to a taxi dispatch station, who connects drivers
(trip providers) to clients (trip consumers).

Thus, the next step is to replace the single Map Services component
by a single Map Broker and a set of multiple Map Services components.
This implies that the Navigation App component will now have to
possess an additional (required) interface to connect to the (provided)
interface of the Map Broker, in order to request a map service. Once
the Map Broker provides the address of a selected Map Services, the
Navigation App may approach it using the existing Map Requests
interface pair. The resulted modified architecture is shown in ‎Figure
8 below.

It should be noted that the change from a single server to multiple
servers, mediated by a broker, requires also a change in the binding
policy: The binding in the original functional architecture (‎Figure 4),
between the Navigation App component and the (single) Map Services
component is static, meaning that the application always knows that
server. When multiple servers are used (as depicted in the modified
architecture of ‎Figure 8), the binding between an application and a
server becomes dynamic, i.e. may change over time. However, the
binding of the (single) broker to the application now becomes static.
Moreover, the Navigation App component must now have a new
required interface (to the Map Broker component) in addition to the
one it already has (to a Map Services component).

From the behavioral point of view, the implementation of use case
#2: Navigate along Route, as described in ‎Figure 6, has to be changed
by adding the Map Broker component and the "swapping" mechanism
enabling the Navigation App component to request alternative Map
Services component and to connect to it. ‎Figure 9 below shows a
part of the modified sequence diagram of ‎Figure 6 - an elaboration
of the "download_from_server" option ('opt' fragment) that comes
after the Navigation App's unsuccessful attempt to retrieve a relevant
map area within its locally-available map data: In order to indicate an
unresponsive Map Services component (named MS1) a watchdog is

Figure 8: The modified functional architecture for the CNS case-study, containing a Map Broker and multiple Map Services components.

https://doi.org/10.15344/2456-4451/2019/144

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 4. 2019. 144

invoked in parallel to the map data request. A 'timeout' flag raised by
the watchdog indicates the unresponsiveness. In this case a request for
an alternative Map Services component is issued to the broker, which
returns the address of another Map Services component (named
MS2). Then the Navigation App component may approach MS2 and
download the requested map data.

Further implications of the architectural modifications

In the previous Subsection we proposed architectural changes
implied by considering an Availability issue, which were based upon
two architectural decisions:

1.	 Using multiple servers (i.e. by applying the Redundancy tactics);
2.	 Changing the binding of an application to a map server from

static to dynamic (by applying the Broker architecture pattern).

Citation: Tomer A (2019) Functional Angels and Quality Devils: Incorporating Quality Scenarios into Functional Scenarios for Software-intensive System
Architecture. Int J Comput Softw Eng 4: 144. doi: https://doi.org/10.15344/2456-4451/2019/144

 Page 15 of 17

We have also demonstrated these changes by means of UML
models.

However, such changes may have implications on the architecture
beyond those shown in the example, as follows:

Modifications to the physical architecture

In the physical architecture shown in ‎Figure 1, we assumed that the
map data DB resides in a physically separate node (a server). When
a broker is introduced, it should be decided where to locate it, where
the possibilities are: (a) in the Smartphone node, (b) in the Navigation
Server node, (c) in a (new) separate node. Such decision immediately
requires new considerations about the physical links, which might
lead to physical architecture change.

Figure 9: A modification to the implementation of use case #2, using a Map Broker.

https://doi.org/10.15344/2456-4451/2019/144

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 4. 2019. 144

Added functionality

On top of the functionality added to use case #2: Navigate along
Route (as shown in ‎Figure 7), the broker mechanism, for example,
requires that Map Services components will be able to register/
unregister at the broker as service provision candidates. It is likely
that a new use case ("Register/Unregister") is to be added to the use-
case diagram of ‎Figure 2. In addition, we may want the broker to
propose only "live" servers, thus enabling it to check a server's status
before proposing it as an alternative candidate. This might be added
as additional action/condition to the use-case specification (and,
consequently, to the sequence diagram). Note that corresponding
interfaces (between the Map Broker and Map Services components),
to support these two functionalities, has already been considered in
the modified architecture of ‎Figure 8.

Additional quality scenarios

In the original architecture, the single Map Services component was
a single point of failure, thus giving rise to an Availability scenario
caused by the unresponsiveness of the server. When the component
was duplicated, and a Map Broker introduced as a mediator, the
availability of the server was resolved, but caused the broker to become
a single point of failure, which might raise a new Availability scenario,
caused by unresponsiveness of the broker. Although this issue may
be revealed by applying a "How well?" question to the "propose an
alternative server" function in Branch B of the modified use case, the
considerations, as well as the proposed tactics, may be different this
time. The phenomenon that "every solution causes new problems" will
be discussed in the last Section of the paper.

Summary and Conclusions

In this paper we suggested an approach to resolve run-time
quality attribute issues in software-intensive systems, whether
expressed explicitly (as non-functional requirements) or implicitly
(as stakeholder expectations about the quality of the system). Our
approach is based upon substituting quality attributes by quality
scenarios, thus providing functional solutions to non-functional
issues. We assume that run-time quality attribute violations usually
emerge while the system is operating (i.e. applies its functionality),
and therefore such faults can be indicated in the functional scenarios,
by applying "How well?" questions, i.e. trying to identify what can
go wrong during this operation. As a response, we introduce new
functionality, in attempt to prevent the fault from becoming a failure
of the entire task. Presuming that an architecture already exists, we
apply the new functionality to it, with the possible use of architecture
patterns, modifying the architecture accordingly.

In the following we summarize the proposed two-phase process,
as detailed and demonstrated in the paper, using UML modeling. We
refer to the architecture in its four views, as mentioned in the above.

1.	 Phase 1: Construct an initial functional architecture

Citation: Tomer A (2019) Functional Angels and Quality Devils: Incorporating Quality Scenarios into Functional Scenarios for Software-intensive System
Architecture. Int J Comput Softw Eng 4: 144. doi: https://doi.org/10.15344/2456-4451/2019/144

 Page 16 of 17

2.	 Phase 2: Consider quality attributes and modify the architecture
accordingly

Although the process described above is systematic, and may lead
to "acceptable" architecture, it is not simple and requires considerable
effort of skilled software and system architects. It should also be noted
that the term "acceptable architecture" is rather subjective, depending
upon other considerations, such as stakeholder satisfaction, schedule,
budget, etc. On the other hand, since the process is model-based, a
number of resulting architectures may be compared and evaluated
conveniently.

In the case-study described throughout the paper we demonstrated
the process over a single issue (map server availability). As discussed
above, an architectural modification may yield to additional quality
issues, repeatedly. However, addressing a big number of quality issues
at one iteration may complicate the process significantly. Therefore, the
number of quality issues resolved at any one time should be adapted
to the capacity and skills of the architects, as well as to stakeholders'
priorities.

Further Research

The approach proposed in this paper needs further practical
validation. Parts of it were already been applied at model-based
software engineering courses, delivered by the author, both at
undergraduate and graduate levels, and proved to be applicable. As

1.	 Construct a Use Case Model (Use-case Diagram + Use-case
Specifications) from the functional requirements;

2.	 Identify the functions comprising the functional scenarios (MSS
+ branches);

3.	 Propose functional components and assign to them the functions
identified in step 1.2;

4.	 Implement the Use-case specifications of step 1.1 as interactions
between the components proposed in step 1.3, constructing the
Interaction View as a Sequence Diagram;

5.	 Derive the provided and required interfaces for each functional
component from the interaction needs of step 1.4, constructing
the Functional Architecture as a Component Diagram;

6.	 If applicable, obtain the Physical Architecture of the entire system
as a Deployment Diagram and combine it with the Functional
Architecture of step 1.5 into a Combined Architecture as a
Composite Diagram.

1.	 Apply "How well?" questions to the functions identified in
step 1.2 (i.e. try to anticipate faults that may happen when the
function is performed);

2.	 Relate each fault to a quality attribute (or sub-attribute) and
choose a response tactic;

3.	 Add the response to the Use-case Model as new functional
scenarios, my means of either (a) a new use case, (b) an extending
use case of the current one or (c) a branch in the current use case;

4.	 Identify the newly added functions implied from step 2.3;
5.	 Assign those functions to existing functional components, or

propose new ones;
6.	 Modify the Interaction View (the Sequence Diagrams) by

consequently implementing the scenario modifications made in
step 2.3;

7.	 Modify the Functional Architecture (the Component Diagram)
in correspondence with the modifications of step 2.6;

8.	 If applicable, modify the Physical Architecture (the Deployment
Diagram) and the Combined Architecture (the Composite
Diagram) accordingly;

9.	 Repeat steps 2.1-2.8 until reaching a satisfiable architecture
(subject to the applicable architecture assessment criteria).

https://doi.org/10.15344/2456-4451/2019/144

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 4. 2019. 144

mentioned, the quality of the resulted architecture is subjective, but
further research may attempt to apply more objective criteria.

Another research direction might be to automate the process.
However, since the application of it is based on human knowledge and
decision-making it is inevitable to assume that such automation must
be addressed using artificial intelligence techniques. One of the most
significant issues throughout the process is the consistency among the
various views of the architecture, although the systematic application
of the process, i.e. deriving new models from other models, is intended
to preserving consistency "on the fly".

In this paper we used structured text (use-case specification) to
formalize functional scenarios. There are other models used to describe
scenarios, such as UML Activity Diagrams. Since the scenario model
is used here as the source where functions are identified, it appears
that Activities or Actions of an Activity Diagram might serve the same
purpose. We intend to explore this issue in the future.

The discussion in this paper was excluded to only run-time
quality attributes. In fact, non-run-time (design-time) attributes
apply to the development process rather than to the functionality
of the system. Modifiability (under Maintainability), for example,
is violated in the event that a development cycle fails to satisfy a
newly introduced requirements, since one of its components cannot
be changed. In order to prevent this fault from becoming a failure
(i.e. a new version cannot be released) a change to the development
process may be applied, suggesting to develop a modifiable (generic)
component instead. Thus, the same process may be applied to non-
run-time attributes, given that the development process is described
as a functional scenario (for the "development team" system). This
might lead to another research direction, dealing with development
processes rather than with system operation.

Competing Interests

The author declare that there is no competing interests regarding
the publication of this article.

References

1.	 IEEE 1062-2015, IEEE Recommended Practice for Software Acquisition, 3.1.

2.	 Sommerville I (2011) Software Engineering. 9th Edition, Pearson.

3.	 Sukumaran S, Chandran K (2015) The Unspoken Requirements - Eliciting
Tacit Knowledge as Building Blocks for Knowledge Management Systems.
Lecture Notes in Business Information Processing 224: 26-40.

4.	 Kano N, Nobuhiku S, Fumio T, Shinichi T (1984) Attractive quality and must-
be quality. Journal of the Japanese Society for Quality Control 14: 39-48.

5.	 ISO/IEC/IEEE 12207:2017, Systems and software engineering–Software life
cycle processes, International Standard Organiztion (ISO), 2017

6.	 Kruchten PB (1995) The 4 + 1 view model of architecture, Software, IEEE
12: 42-50.

7.	 User Stories: An Agile Introduction.

8.	 Cohn M (2004) User Stories Applied: For Agile Software Development.
Addison-Wesley.

9.	 Jacobson I, Christerson M, Jonsson P, Övergaard G (1992) Object-Oriented
Software Engineering - A Use Case Driven Approach. Addison-Wesley.

10.	 Cockburn A (2001) Writing Effective Use Cases. Addison-Wesley.

11.	 Systems and software engineering-Vocabulary. International Standard
Organiztion (ISO).

12.	 Tomer A (2019) Relay Race: The Shared Challenge of Systems and Software
Engineering. Systems Engineering in the Fourth Industrial Revolution - Big
Data, Novel Technologies, and Modern Systems Engineering, Wiley.

Citation: Tomer A (2019) Functional Angels and Quality Devils: Incorporating Quality Scenarios into Functional Scenarios for Software-intensive System
Architecture. Int J Comput Softw Eng 4: 144. doi: https://doi.org/10.15344/2456-4451/2019/144

 Page 17 of 17

13.	 ISO/IEC 25010:2011, Systems and software engineering – Systems and
software Quality Requirements and Evaluation (SQuaRE) – System and
software quality models, International Standard Organiztion (ISO), 2011.

14.	 L´opez C, Astudillo H (2005) "Use case- and Scenario-based Approach
to Represent NFRs and Architectural Policies", In Proceedings of 2nd
International Workshop on Use Case Modeling. Use Cases in Model-Driven
Software Engineering Held in conjunction with Models.

15.	 Brito I, Moreira A, Araújo J (2019) A requirements model for quality
attributes.

16.	 Dörr J, Kerkow D, Von Knethen A, Paech B (2003) Eliciting efficiency
requirements with use cases. In Proceedings of the International Workshop
on Requirements Engineering: Foundations of Software Quality.

17.	 Bass L, Clements P, Kazman R (2012) Software Architecture in Practice.
Addison-Wesley.

18.	 Bachmann F, Use Cases Quality Attribute Scenarios, SEI, Carnegie-Mellon
University.

19.	 Rozanski N, Woods E (2012) Software Systems Architecture, 3rd Edition
Addison-Wesley.

20.	 Sabry AE (2015) Decision Model for Software Architectural Tactics Selection
Based on Quality Attributes Requirements. Procedia Computer Science 65:
422-431.

21.	 Buschmann F, Rohnert H, Stal M, Sommerlad P, Meunier R (1996) Pattern-
Oriented Software Architecture: A System of Patterns, Volume 1, Wiley.

This article was originally published in a special issue:

Software Architecture

Handled by Editor(s):

Dr. Mohammad Alshayeb
Information and computer science Department
King Fahd University
Saudi Arabia

https://link.springer.com/chapter/10.1007/978-3-319-21009-4_3
https://link.springer.com/chapter/10.1007/978-3-319-21009-4_3
https://link.springer.com/chapter/10.1007/978-3-319-21009-4_3
http://www.agilemodeling.com/artifacts/userStory.htm
https://www.infor.uva.es/~mlaguna/is1/materiales/BookDraft1.pdf
https://doi.org/10.15344/2456-4451/2019/144
https://pdfs.semanticscholar.org/57a5/b99eceff9da205e244337c9f4678b5b23d25.pdf
https://www.researchgate.net/publication/2497090_A_Requirements_Model_for_Quality_Attributes
https://www.researchgate.net/publication/2497090_A_Requirements_Model_for_Quality_Attributes
http://crinfo.univ-paris1.fr/REFSQ/03/papers/Dorr.pdf
http://crinfo.univ-paris1.fr/REFSQ/03/papers/Dorr.pdf
http://crinfo.univ-paris1.fr/REFSQ/03/papers/Dorr.pdf
https://jegadeesansite.files.wordpress.com/2018/01/sei-series-in-software-engineering-len-bass-paul-clements-rick-kazman-software-architecture-in-practice-addison-wesley-professional-2012.pdf
https://jegadeesansite.files.wordpress.com/2018/01/sei-series-in-software-engineering-len-bass-paul-clements-rick-kazman-software-architecture-in-practice-addison-wesley-professional-2012.pdf
http://www.cac.cornell.edu/VW/usecases/default.aspx
http://www.cac.cornell.edu/VW/usecases/default.aspx
https://www.sciencedirect.com/science/article/pii/S1877050915029415
https://www.sciencedirect.com/science/article/pii/S1877050915029415
https://www.sciencedirect.com/science/article/pii/S1877050915029415

