
Architecting Feasible Deployment Alternatives for Publish-Subscribe
Systems

Publication History:

Received: March 28, 2017
Accepted: August 14, 2017
Published: August 16, 2017

Keywords:

Publish-subscribe architecture,
Model-driven development,
Architectural trade-Off analysis,
Tool support

Research Article Open Access

Introduction

A distributed system consists of multiple software components
that are located on networked computers, but act and run as a
single system. The computers that are in a distributed system can be
connected by a local network and be physically close to each other,
or they can be connected in a wide area network and geographically
distant. Distributed systems offer many benefits over centralized
systems, including scalability, concurrency and redundancy. The
components in a distributed system communicate and coordinate
their actions by passing messages to achieve a common goal.
There are many alternatives for the message passing mechanism in
distributed systems, including the request-reply pattern and publish-
subscribe pattern [1]. The publish-subscribe pattern has gained broad
attention in the development of loosely coupled, scalable large-scale
applications. In distributed systems with the publish/subscribe
interaction pattern, so-called subscribers express their interest in an
event, or a pattern of events, and are subsequently asynchronously
notified of events generated by publishers.

The publish-subscribe pattern [1] has been used in several different
standard infra-structures such as the Java Message Service (JMS)
[2], Data Distribution Service (DDS) [3], Distributed Interactive
Simulation (DIS) [4] and High Level Architecture (HLA)[5]. These
infrastructures help to reduce the effort for developing publish-
subscribe systems but do not impose constraints on the deployment
of the compo-nents to the different nodes. Given the large number
of components involved in distri-buted systems, usually many
different deployment configuration alternatives are possible that
tend to trade-off with respect to execution cost and communication
cost. Unfortunately, for the human engineer it is not tractable to
define a feasible configuration in case of large number of nodes and
participants.

The deployment of participants to nodes can be generalized to the
so-callled task allocation problem that has been widely addressed in

*Corresponding Author: Dr. Bedir Tekinerdogan, Information Technology,
Wageningen University, Wageningen, The Netherlands; E-mail: bedir.
tekinerdogan@wur.nl

Citation: Tekinerdogan B, Celik T (2017) Architecting Feasible Deployment
Alternatives for Publish-Subscribe Systems. Int J Comput Softw Eng 2: 117. doi:
https://doi.org/10.15344/2456-4451/2017/117

Copyright: © 2017 Tekinerdogan et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

the literature [6,7]. It is generally known that the solution of the
task allocation problem can quickly lead to a design space that is
not tractable for the human designer. Hence, the evaluation of the
deployment alternative is usually based on expert judgment and
postponed to the implementation phase. Relying on expert judgment
for defining the feasible deployment of the components, however, is
limited, since designing deployment model of the system requires
knowledge on underlying technology and the application domain. It
is not always possible to find experts that have both knowledge on the
corresponding domain and the technology infrastructure. Postponing
the design decisions to the implementation might easily lead to an
improper configuration with respect to performance requirements.

In this paper we propose a generic method for systematically
selecting and generating deployment alternatives for Publish-
Subscribe based distributed systems. The approach is an abstraction
of our earlier work on defining feasible configuration alternatives in
HLA based distributed simulation systems [8,9]. The approach that
we present in this paper is generic and can be applied to a broader
set of publish subscribe systems, beyond simulation systems. We use
the so-called capacitated task allocation problem (CTAP) in which
constraints on memory capacity and processing power are applied
to manage the trade-offs between the total execution cost and total
communication cost to derive feasible design alternatives. We have
developed a tool framework (Deploy-PS) that provides an integrated
development environment for deriving feasible deployment

International Journal of
Computer & Software Engineering

Bedir Tekinerdogan1*and Turgay Celik2

1Information Technology, Wageningen University, Wageningen, The Netherlands
2Department of Computer Engineering, HacettepeUniversity, Ankara, Turkey

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 2. 2017. 117

 Tekinerdogan et al., Int J Comput Softw Eng 2017, 2: 117
 https://doi.org/10.15344/2456-4451/2017/117

Abstract

Publish-Subscribe is one of the important patterns for developing scalable distributed systems. Usually,
the deployment of the publishers and subscribers to the nodes can be done in many different ways,
whereby each deployment alternative will have a different impact on the performance. The many possible
architecture design alternatives tend to trade-off with respect to execution cost and communication cost.
Unfortunately, for the human engineer it is not tractable to define a feasible configuration in case of large
number of nodes and participants. In this paper we propose a generic method to assist the architect
by automatically deriving feasible deployment alternatives of Publish-Subscribe based distributed
systems. The approach is based on the so-called capacitated task allocation problem (CTAP) in which
constraints on memory capacity and processing power are applied to manage the trade-offs between the
total execution cost and total communication cost to derive feasible design alternatives. The method is
supported by our tool framework (Deploy-PS) that provides an integrated development environment
for modeling the Publish-Subscribe deployment architecture, modeling the physical resources and the
performance requirements, and the selection and generation of the feasible deployment architecture
alternatives.

Special Issue: Software Architecture

https://doi.org/10.15344/2456-4451/2017/117
https://doi.org/10.15344/2456-4451/2017/117

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 2. 2017. 117

alternatives based on the application and the available physical
resources at the design phase. The method and the tool support have
been validated by using two different case studies for the development
of a traffic simulation system [8], an electronic warfare simulation [9],
and a DDS-based city wide Advanced Traffic Management System
(ATMS) [10].

The remainder of the paper is organized as follows. In section 2
we provide the background to support the understanding of the
approach. Section 3 describes the problem statement in more detail.
Section 4 presents the approach for evaluating alternative design
options briefly. Section 5 describes the generic metamodel that will be
specialized for different Publish-Subscribe systems. Section 6 presents
the corresponding tool support. Section 7 provides the evaluation.
Section 8 describes the related work and finally section 9 concludes
the paper.

Publish-Subscribe Architectures

As stated before the publish-subscribe interaction pattern has
been applied in several applications and infrastructures, which share
similar structure and concepts. Figure 1 shows the result of a domain
analysis to publish-subscribe systems and represents the reference
architecture of these systems.

A typical Publish-Subscribe system defines a Publish-Subscribe
Domain which consists of a group of Participants which are deployed
on a number of Application-Nodes. Each Participant defines a number
of Publisher and Subscribers that reads/writes Data Objects/Events.
Data Objects/Events are elements of data exchange model of the
publish-subscribe system. Three different types of decoupling can be
identified between the subscribers and publisher [1]. Time decoupling
refers to the fact that interacting components do not need to be
actively participating in the interaction at the same time. Publishers
might publish events independent of the subscribers, and subscribers
might get notified about the occurrence of events even if the original
publisher of the event is disconnected. Space decoupling refers to
the fact that publishers and subscribers might not know each other
and do not hold any reference to each other. Finally, synchronization

Citation: Tekinerdogan B, Celik T (2017) Architecting Feasible Deployment Alternatives for Publish-Subscribe Systems. Int J Comput Softw Eng 2: 117. doi:
https://doi.org/10.15344/2456-4451/2017/117

 Page 2 of 11

decoupling refers to the fact that publishers and subscribers are not
blocked during their actions. Based on a thorough domain analysis
to existing publish-subscribe middleware systems [11-13] we have
derived a feature model that is shown in Figure 2. Here the publish-
subscribe middleware systems can be distinguished based on the
type and the service model. Regarding the type we can identify
data-centric, message-centric or object-centric approaches. In the
message-centric approach, the middleware is not aware of the content
of the data; it is just responsible for transmitting the messages among
participants. In data-centric approach, the middleware is aware of
the content and can impose quality of service parameter values on
the data. In object-centric approaches the middleware is responsible
of transmitting objects among participants. The service model of a
publish-subscribe middleware can be characterized based on (1)
Communications Model, (2) Architecture Model and (3) Object
Model. Communication Model defines communication approach
that is applied by the participants. The communication approach
on its turn can be based on data distribution, shared data, queuing,
and remote procedure call. The Architecture Model of a middleware
can be either centralized or decentralized denoting whether the data
flows through a central unit or not. Further, the architecture model
can include a broker that manages the data flow. The architecture
can be unbrokered, i.e. there is no broker defined, or multi-
brokered, whereby multiple brokers manage the data flow. The final
distinguishing character of the service model is the adopted Object
Model that defines the type of middleware entities that is adopted in
the interaction among participants.

In the state-of-the-art we can identify several publish-subscribe
middleware ap-proaches which are listed in Table 1. The columns
of the table describe the features of the feature model of Figure 2.
From the table we can observe that publish-subscribe systems like
DDS, HLA, DIS, and TENA are based on data distribution in which
publishers and subscribers share data with each other directly. In
JMS, a queue based approach is used in which messages are pushed
to centralized queues and delivered to the consumers. CORBA is an
approach in which by default remote procedure call approach is used.
Note that, the architecture model of the corresponding middleware
can even change according to the different implementations. For
example there are brokered/unbrokered implementations of HLA, or
brokered/multi-brokered implementations of JMS. Regarding object
model we can see that different middleware systems adopt their own
specific object models. For example, within the context of DDS, the
pub-sub application is defined as a domain which has several domain
participants that define Publisher and Subscribers for different Topics.

Problem statement

An important issue that usually directly affects the performance
of publish-subscribe systems is the allocation of the participants to
the available nodes. This is a generic problem that recurs in each of
the publish-subscribe middleware systems that we have discussed
in the previous section. For small to mid-sized applications with a
limited number of participants and several nodes the allocation of the
participants can be defined by a human expert. For this, the expert
will predict an optimum deployment based on earlier experiences
with publish-subscribe systems. But currently software systems are
not small scale but easily require a large number of participants and/
or nodes. As such, it becomes not tractable anymore for the human
engineer to identify an optimal deployment manually.

Figure 1: Reference Architecture for Publish-Subscribe Systems.

https://doi.org/10.15344/2456-4451/2017/117

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 2. 2017. 117

We illustrate this problem in Figure 3, which shows the computed
number of possible alternative deployment models according to
different node and participant sizes. For three different node sizes
(6, 8, 10) we have computed the possible number of alternative
deployments. The three functions are also represented in Figure 3. In
the figure we can observe that the number of alternative deployments
increases exponentially according to participant and node count.

Problem statement

An important issue that usually directly affects the performance
of publish-subscribe systems is the allocation of the participants to
the available nodes. This is a generic problem that recurs in each of
the publish-subscribe middleware systems that we have discussed
in the previous section. For small to mid-sized applications with a
limited number of participants and several nodes the allocation of the
participants can be defined by a human expert. For this, the expert
will predict an optimum deployment based on earlier experiences
with publish-subscribe systems. But currently software systems are
not small scale but easily require a large number of participants and/

Citation: Tekinerdogan B, Celik T (2017) Architecting Feasible Deployment Alternatives for Publish-Subscribe Systems. Int J Comput Softw Eng 2: 117. doi:
https://doi.org/10.15344/2456-4451/2017/117

 Page 3 of 11

or nodes. As such, it becomes not tractable anymore for the human
engineer to identify an optimal deployment manually.

We illustrate this problem in Figure 3, which shows the computed
number of possible alternative deployment models according to
different node and participant sizes. For 3 different node sizes (6, 8, 10)
we have computed the possible number of alternative deployments.
The three functions are also represented in Figure 3. In the figure we
can observe that the number of alternative deployments increases
exponentially according to participant and node count.

From a general perspective, finding the feasible deployment
alternative is a combi-natorial optimization problem in the branch
of optimization or operations research in mathematics. This problem
aims to find an optimal alternative from a design space consisting
of finite set of alternatives. It is known that in such combinatorial
optimization problems, brute-force search or exhaustive search,
in which possible candidates for the solution are systematically
enumerated and checked, is not feasible for large design spaces. One
way to speed up this brute-force strategy is to reduce the design space

Figure 2: Feature Model of Publish-Subscribe Systems.

Pub/Sub Techn. Type Service Model

Communication
Model

Architecture
Model

Object
Model

DDS Data Centric Data-Distribution Decentralized/
Unbrokered

Publisher, Subscriber,
Domain, Topic, etc.

HLA Data Centric Data-Distribution Decentralized/
Unbrokered or Bro-

kered

Federation, Federate,
Object Class, etc.

DIS Data Centric Data-Distribution Decentralized/
Unbrokered

Protocol Data Unit
(PDU), etc

TENA Data Centric Data-Distribution Decentralized/
Unbrokered

Logical Range,
Logical Range Object
Model(LROM), etc.

JMS Message Centric Queue Based Centralized/Brokered
or

Centralized/Multi-
Brokered

Queues, Messages,
Topics

CORBA Event
Services

Object Cen-tric Remote Procedure
Call

Centralized/Multi-
Brokered

IDL Objects, Event
Channels, etc.

Table 1: Publish-Subscribe Middleware Approaches.

https://doi.org/10.15344/2456-4451/2017/117

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 2. 2017. 117

of the set of candidate solutions, by using heuristics specific to the
problem class. Within the context of finding deployment alternatives of
publish-subscribe systems the heuristics can be defined by the human
expert based on earlier experiences, but as we have shown in Figure
3 the design space gets simply too complex to be tractable. Hence,
other approaches are needed to select the feasible design alternatives.
For this, we can first translate the feasible deployment alternative
selection problem to the category of so-called task allocation problem
(TAP)[] [27,19,21], which is one of the fundamental combinatorial
optimization problems. In its most general form, the TAP defines as
input a number of agents (nodes) and a number of tasks (participants).
Any agent can be assigned to perform any task, incurring some cost
that may vary depending on the agent-task assignment. The objective
of the problem is to find a feasible mapping (solution) for the given
input. Several different algorithmic solutions have been devised to
solve the task allocation problem. In general each TAP algorithm
takes as input the required optimization parameters and produces the
feasible allocation of tasks to processors. The optimization parameters
may include parameters such as execution cost, communication cost,
memory consumption and I/O cost.

In our particular case, besides of the definition of nodes and
participants, also constraints are imposed on the physical resource
properties and likewise the problem needs to be further specialized.
Concretely, the feasible deployment problem that we want to solve
appears to be an instance of the so-called Capacitated Task Allocation
Problem (CTAP) [9] which specializes the TAP by including
constraints on memory capacity and processing power [15]. Formally,
the objective function of CTAP is shown in Figure 4. The problem
shown in Figure 4 can be defined as follows:

There exists m tasks, where task i requires mi units of memory.
There are n non-identical processors, where processor p has a memory
capacity of Mp and processing power of Cp. The cost of executing task i
on processor p is xip. In addition, cij denotes the communication cost of
tasks i and j. Communication frequencies shall be taken into account
while calculating communication costs. A higher communication
frequency between tasks i and j results in a higher communication
cost, cij. We aim to assign each task to a processor without violating
the memory and the processing power constraints of each processor.

Citation: Tekinerdogan B, Celik T (2017) Architecting Feasible Deployment Alternatives for Publish-Subscribe Systems. Int J Comput Softw Eng 2: 117. doi:
https://doi.org/10.15344/2456-4451/2017/117

 Page 4 of 11

The objective in our problem is to minimize the sum of total
execution cost and total communication cost (among participants)
while not exceeding the memory capacity of each node.

In this paper we do not aim to provide an algorithmic solution by
designing novel algorithms or analyzing existing ones. Instead we
focus on tackling the problem from an engineering perspective by
integrating architectural modeling, algorithmic design preparation
and analysis, and model-driven development to generate the required
deployment alternatives. Hence our research objective is as follows:

“Provide an approach and tool support for defining Publish-
Subscribe system architecture, extracting the necessary task allocation
input parameters for task assignment algorithm from the design using
a task assignment algorithm to find an optimized task-to-processor
allocation, generating alternative deployment models from the output
of task assignment algorithm, and evaluating the generated deployment
models”

Figure 3: Functions for showing the possible numer of Participant to Node Allocations for node sizes 6, 8 and 10.

Assign tasks to processors to minimize the sum:

Subject to:

(aip = 1, if task i is assigned to processor p, 0 otherwise)

Where:
T, set of m participants = {t1, t2,,tm}
P, set of n nodes {p1, p2,, pn}
Mp, memory capacity of node p
mi, amount of memory needed for participant i
Xiq, cost of executing ti participant on pq node.
E, set of communication between participants, whereby each
 communicating participant combination (i, j) has a
 communication cost cij if participants ti and tj are assigned to
 different nodes. Communication cost is negligible if two
 participants are assigned to same node.

∑∑∑∑
=∈==

−+
n

p
ijjpip

Eji

n

p
ipip

m

i
caaxa

1),(11

)1(

TiPpa

Mam

Tia

ip

p
i

ipi

n

p
ip

∈∈=

≤

∈=

∑

∑
=

,},1,0{

,1
1

Figure 4: Objective function for deriving feasible deployment models.

https://doi.org/10.15344/2456-4451/2017/117

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 2. 2017. 117

Case Study

In this section we shortly describe the case study that we will use
as a running ex-ample throughout the paper. The case study we have
defined is a simulated city with agents like creatures (e.g. people,
pets), buildings (e.g. houses, schools), vehicles (car, truck, motorcycle,
bicycles, etc.), traffic lights, etc. All agents will be autonomous and will
interact with other agents. The decomposition view of the case study
is given in Figure 5.

In a sample simulated city scenario, there may be for example,
600 people, 80 pets, 680 vehicles, and 30 traffic lights. Although
the city population is small in this case study, totally there are 1390
participants. We have calculated number of alternative deployments
for this sample scenario and results are given in Table 2. It can be seen
that even for a small scale scenario, it is not tractable to derive and
evaluate alternative deployments manually. In the following section
we first describe our proposed method to derive feasible alternatives
and use this case study to explain the method steps.

Method

In the previous section we have discussed the allocation problem
that is generic to the existing publish-subscribe middleware
systems. In this section we provide a gener-ic method for deriving
and evaluating feasible deployment alternatives for these publish-
subscribe middleware systems. The method integrates architectural
modeling with the algorithmic solution to the CTAP problem to
select a feasible deployment alternative, and generate the deployment
using model-driven development techniques. The method will be
used in the design phase where the system is not developed yet, and
the code is not available. The method consists of two basic activities
Architecture Design and Feasible Deployment Generation. We explain
each activity below.

Architecture design

The architecture design activity is shown in Figure 6. It starts with
the step Define Re-quirements which will provide a description of the
required scenarios of the Publish-Subscribe system. This is the only
step that is manual, for the remaining steps of the method we provide
tool support as discussed in the next section.

Citation: Tekinerdogan B, Celik T (2017) Architecting Feasible Deployment Alternatives for Publish-Subscribe Systems. Int J Comput Softw Eng 2: 117. doi:
https://doi.org/10.15344/2456-4451/2017/117

 Page 5 of 11

In the step Define Data Exchange Model, the data exchange
model is defined to support the publish-subscribe communication
and ensure type-safe data exchange among participants. The step
Define Participants defines the required participants based on the
requirements. Define Pub/Sub Relations defines the publish-subscribe
relations of the participants based on the defined data exchange
model. Parallel to these steps the nodes and their network connections
are designed together with the property values for processing power
and memory capacity. Once the architecture is designed the Feasible
Deployment Generation activity can be started. For the steps Define
Data Exchange Model, Define Participants, and Define Pub/Sub
Relations tool support is provided to assist the user in defining the
corresponding models. The step Feasible Deployment Generation is
fully automated after the required input is provided.

Feasible deployment generation

Figure 6 shows the steps for defining the steps for deriving and
generating the feasible deployment model of the system. The step
Design Execution Configuration defines the run-time properties of
the pub/sub application defined in the architecture design phase.
This includes the definition of the number of participant instances,
the definition of the update rate for participant instances for each
publication (in the publish/subscribe definition), and the definition
of the execution cost of each participant instance on each target
node. The step Generate Input Parameters for Allocation Algorithm
defines the required input parameters values for defining the possible
allocations in the implemented allocation algorithm. For this, both
the static and run-time properties of the participants and the physical

Figure 5: Decomposition View of the Simulated City Case Study.

of Alternative Deployments

Participant # 6 Nodes 8 Nodes 10 Nodes

1390 8334 11112 13890

Table 2: Number of Alternative Deployments for the Casestudy
According to Node Count.

Figure 6: Feasible Deployment Generation Steps.

https://doi.org/10.15344/2456-4451/2017/117

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 2. 2017. 117

resources are defined. The algorithm for computing the feasible
deployment alternatives is executed in step Find Feasible Deployment
Model(s). If the algorithm can find a feasible deployment this is
provided as a table representing the mapping of tasks (participant
instances) to processors (nodes). It is also possible to generate more
than one feasible deployment alternative and present the results to
the designer for deciding the deployment model. There is a trade-off
between resource consumption and communication costs. In case
more modules are deployed on a single node, while the resource
consumption will increase, the communication costs will decrease
and vice versa. If no feasible solution was found in the previous step,
detailed feedback is presented to the designer to optimize the design
model in the step Analyze Tool Feedback. Based on a trade-off analysis
the designer will then first try to update the execution configuration.
If a feasible deployment can still not be found then the designer can
decide to return to the beginning of the process to refine/update the
design.

1) A User selects the files for uploading/downloading with <input
type = ”file”> element in the HTML <form> element.
2) The files are transmitted with the POST method.
3) The JSP file describes the destination.
4) The JSP file receives the request and analyzes the original file name
for each file.
5) The JSP file transforms the file into an object of ”Input-Stream” to
the Java binary code.

Metamodel for Publish-Subscribe Systems

In this section we provide the metamodel for Publish-Subscribe
systems that will be used for supporting the method as well as the
tool set Deploy-PS that we describe in the next section. The developed
metamodel as shown in Figure 7 is generic and represents the basic
concepts for Publish-Subscribe systems. For representing special
Publish-Subscribe such as DDS and HLA it needs to be specialized.
The metamodel is built around four basic elements that we will discuss
in the following subsections.

Application model

This model element defines the element for defining the Publish-
Subscribe applica-tion. The application model consists of a set of
Participants, DataExchangeModelElements, and PubSubRelations
to define the Publish-Subscribe system participants, elements of
the data exchange model and Publish-Subscribe relations among
participants and data exchange model elements. The possible Publish-
Subscribe relation types are defined in PubSubTypeEnum as Publish,
Subscribe, and PublishSubscribe (means both publish and subscribe).
This metamodel element is instantiated in the step Define Pub-Sub
Application of the method as shown in Figure 8.

Physical resource model

This model element contains metamodel elements that will be used
for defining the node properties and is instantiated in the step Design
Node Properties of Figure 8. Physical resource model contains a set
of Nodes to represent each processing element. Each Node defines
memoryCapacity property and has a set of Processors to represent the
values for the capacity and computation power. In addition to the
node properties, the physical resource model also defines the network
connections among the nodes with Network and NetworkConnection
elements.

Citation: Tekinerdogan B, Celik T (2017) Architecting Feasible Deployment Alternatives for Publish-Subscribe Systems. Int J Comput Softw Eng 2: 117. doi:
https://doi.org/10.15344/2456-4451/2017/117

 Page 6 of 11

Figure 7: Abstract Metamodel for Publish-Subscribe Systems Feasible
Deployment.

Figure 8: Architecture Design Activity of the Method.

https://doi.org/10.15344/2456-4451/2017/117

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 2. 2017. 117

Execution configuration model

This model element contains the metamodel elements that will be
used for defining the execution configuration models given in Fig.
7. An execution configuration defines the dynamic properties of a
Publish-Subscribe system with a number of Participant Instances
and Publications. Each Participant Instance relates to a participant in
Application Model. A Participant Instance also defines the required
Memory of the participant instance and a node Exec Cost Table that
represents execution cost of the participant instance on a specified
node. Since execution cost of a participant instance may vary according
to the node properties, an execution cost table is used instead of
defining a constant execution cost value. Publication element defines
a participant’s publication of a Data Exchange Model Element defined
in Application Model with a specified upda-teRate.

Deployment model

This model element contains metamodel elements that will be
used for defining generated deployment models given in Figure 6. A
deployment model consists of a set of Members that contains a set
of deployed Participant Instances (defined in Execution Configuration
Model). Each Member is deployed on a Node defined in Physical
Resource Model.

Relation to platform specific metamodels

The metamodel that we have defined in Figure 7 can be specialized
to define platform specific middleware systems.

The mapping of the generic metamodel elements to two example
middleware sys-tems is shown in Table 3. Some metamodel elements
remain the same for the differ-ent platform specific models. For
example the metamodel element Publication is the same for all the
middleware systems as we have shown in Table 1. Some metamodel
elements have different names but directly map to the generic
metamodel elements. For example, the generic metamodel element
Participant maps to the metamodel element Federate of HLA, and
Domain Participant of DDS. Some metamodel ele-ments map to more
than one metamodel elements of specific platforms. For example, the
Data Exchange Model Element maps to Object Class, Interaction
Class, etc of HLA.

Deploy-PS Tool

Based on the approach that we have defined in section 4 we
have developed the corresponding toolset Deploy-PS, which is an
integrated development environment for supporting the modeling,
generation and analysis of publish-subscribe architectures. The overall
architecture of Deploy-S is shown in Figure 9.

Deploy-PS is built on the Eclipse Modeling Tools and is
implemented as a set of plug-ins. Eclipse Modeling Tools consists
of different tools such as Eclipse Modeling Framework – EMF [16]
(modeling framework and code generation facility), Graph-ical
Modeling Framework – GMF [17] (graphical editor development
framework), Emfatic [18] (a text editor and a language for editing
EMF models), EuGENia [19] (an abstraction and model generation
tool for easing development of GMF editors).

Deploy-PS consists of eight tools that realize the steps of the
approach in section 4, and which uses the metamodel of Figure 7.

Citation: Tekinerdogan B, Celik T (2017) Architecting Feasible Deployment Alternatives for Publish-Subscribe Systems. Int J Comput Softw Eng 2: 117. doi:
https://doi.org/10.15344/2456-4451/2017/117

 Page 7 of 11

Application Design Tools is defined for designing the application
model. This tool group consists of three different tools for Data
Exchange Model Design, Participant Design, and Pub-Sub Relations
design. The Physical Resources Design Tool is defined for designing the
physical resources. The Execution Configuration Design Tool supports
the development of execution configurations based on the define
application model and physical resources. The Deployment Model
Generation Tool is used to automatically generate the deployment
models based on the application model, physical resources and the

Generic Element HLA Equivalent DDS Equivalent

Pub-Sub Application Federation Domain

Participant Federate Domain Participant

Data Exchange
Model Element

Object Class,
Interaction Class,
Basic Datatype,
Simple Datatype,
Fixed Record,
Enumeration,
Variant Datatype,

Topic,
Topic Type,
Struct,
Sequence,
Typedef,
etc.

Participant Instance Federate Instance Domain Participant
Instance

Publication Publication Publication

Pub-Sub Relation Pub-Sub Relation Pub-Sub Relation

PubSubTypeEnum PubSubTypeEnum PubSubTypeEnum

Member Member Member

Node Node Node

Processor Processor Processor

Network Network Network

Network Connection Network Connection Network Connection
Table 3: Mapping Abstract Metamodel for Publish-Subscribe to Sample
Specialized Middleware Systems.

Figure 9: Overall Architecture of the Deploy-PS tool

https://doi.org/10.15344/2456-4451/2017/117

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 2. 2017. 117

execution configuration. The Deployment Model Analysis Tool
and Deployment Model Comparison Tool are used for evaluating
deployment models with respect to different quality factors.

Evaluation

We have used the case study of section 4 to evaluate our approach
and the PS-Deploy tool. We defined the requirements of the case
study, defined the necessary models for the case study in PS-Deploy
tool environment, generated the deployment models and evaluated
the performance of the generated deployment models.

To support the automated selection of the feasible deployment
alternative we have defined the city simulation using the Deploy-PS
tool. First we defined the data exchange model as given in Figure
10, which includes vehicles, creatures, buildings and other related
datatypes such as creature gender, vehicle type, position, etc.

After defining the data exchange model, we have designed the
participants and their pub-sub relations with data exchange model
elements as shown in Figure 11. Participants publish, subscribe or

Citation: Tekinerdogan B, Celik T (2017) Architecting Feasible Deployment Alternatives for Publish-Subscribe Systems. Int J Comput Softw Eng 2: 117. doi:
https://doi.org/10.15344/2456-4451/2017/117

 Page 8 of 11

both publish-subscribe data exchange model elements as defined in
Figure 10.

With the definition of the data exchange model, the participants and
the pub-sub relations, the application definition phase is completed.
In the next step we defined the physical resource model as shown in
Figure 12. The physical resource model consists of four connected
nodes with different memory capacities and processing powers.

After defining the application model and the physical resources
model, we defined the execution configuration model given in Figure
13. The execution configuration de-fines instance count for each
participant per the scenario given in requirements and update rates
for each publication of participants. The execution configuration
model also defines memory requirements of each participant instance
and execution costs per each node defined in Figure 12.

After designing the pub-sub application model, the physical
resources model, and the execution configuration the deployment
model is automatically generated by the Deploy-PS tool. The result is
shown in Figure 14. As we can observe from the figure, the PS-Deploy

Figure 10: Data Exchange Model for the City Simulation Case Study.

https://doi.org/10.15344/2456-4451/2017/117

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 2. 2017. 117

Citation: Tekinerdogan B, Celik T (2017) Architecting Feasible Deployment Alternatives for Publish-Subscribe Systems. Int J Comput Softw Eng 2: 117. doi:
https://doi.org/10.15344/2456-4451/2017/117

 Page 9 of 11

tool has allocated participant instances defined in the execution
configuration given in Figure 13 to the nodes defined in Figure 12.
Some of the vehicles are assumed to be autonomous, so there are more
vehicles than people.

We have compared the generated deployment model with a manually
defined expert judgment deployment model by using model evaluation tools
provided by PS-Deploy tool. The automatically generated deployment model is
15% better than the manually defined model with respect to the total execution

Figure 11: Participant Definition and Pub-Sub Relations with Data Exchange Model Elements for the City Simulation Case Study.

Figure 12: A Sample Physical Resource Model for the Case Study.

Figure 13: Execution Configuration Model for the City Simulation Case
Study.

Figure 14: Generated Deployment Model for the Case Study.

https://doi.org/10.15344/2456-4451/2017/117

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 2. 2017. 117

cost of the participants and about 25% better in means of total memory
requirement. The statistics are in alignment with the measurements that we
have conducted in our previous work [5].

In the above paragraphs we have shown the application of the
method for simulation systems. However, as we have stated before the
method and the tool can also be applied to other Publish-Subscribe
Systems. For example, for DDS-based systems [2] we specialized our
approach to meet the specific characteristics of the DDS middleware.
Different from HLA (where we have developed the metamodels from
stratch), we realized OMG’s UML profile for DDS for application
design tools (see Figure 9). This is an example case that shows modular
and generic nature of our approach that enables re-using existing
metamodels/UML profiles for different activity steps. More detail
about specialization of our approach for DDS can be found in [10].

Related Work

Different architectural evaluation approaches have been introduced
to evaluate the stakeholders’ concerns. A comprehensive overview
and comparison of architecture analysis methods have been given
by, for example, Dobrica et al. [20], and Babar et al [21]. Kazman et
al. [22] have provided a set of criteria for comparing the foundations
underlying different methods, the effectiveness and usability of
methods. To compare the architectural evaluation approaches several
frameworks have been proposed. The Software Architecture Review
and Assessment (SARA) report provides a conceptual framework
for conducting architectural reviews. The frameworks compare
the methods usually based on the criteria of context and goals of
the method, required content for applying the method, the process
adopted in the method, and the validation of the method. In this
paper we have provided a dedicated architecture analysis approach
for analyzing the deployment of publish-subscribe architectures.

Related to our work there are several other approaches in other
domains for opti-mizing deployment architectures. The general
motivation in these approaches is similar to our motivation for
defining a formal method for optimizing deployment architectures.
In this context, Kugele et al. [23] define an approach for optimizing
deployment model of embedded systems by using non-functional
requirement annotations. The authors focus on the non-functional
requirements for Computing Power, Memory, and Power State. The
computing power and memory requirements map to our Processing
Power and Memory Requirement parameters. The Power State
requirement is defined because of the limited power supplies of
embedded systems. Since our target environment is not embedded
systems, this requirement is not applicable to our approach. Similar to
our approach, Kugele et al. [23] convert the problem to an optimization
problem. Hereby, the necessary inputs of the optimization problem
are extracted from non-functional requirements while we extract
the inputs from the simulation design model. Further, the authors
adopt an integer linear programming (ILP) approach for solving the
optimization problem while we do not mandate any approach but use
a genetic algorithm based heuristic approach as a sample realization.

Zheng et al. [24]define an approach to optimize the task placement
and the signal to message mapping in a hard real-time distributed
environment. The method is applied to an automotive case study.
The problem is expressed as an optimization problem to minimize
the sum of latencies by finding best (1) task-CPU assignment, (2)
signal-message packing, (3) task and message priorities considering
constraints on end-to-end signal latencies and message size.

Citation: Tekinerdogan B, Celik T (2017) Architecting Feasible Deployment Alternatives for Publish-Subscribe Systems. Int J Comput Softw Eng 2: 117. doi:
https://doi.org/10.15344/2456-4451/2017/117

 Page 10 of 11

Zheng et al. [24] used Mixed Integer Linear Programming (MILP)
techniques and used CPLEX [1] as MILP solver.

Aleti et al. [25] discuss the adoption of constructive algorithms
instead of iterative evolutionary algorithms for deployment
optimization of embedded systems. Constructive algorithms often
converge quickly and produce diverse solutions when compared
to iterative algorithms. Aleti et al. [25] adapt Pareto-Ant Colony
Optimization (P-ACO) algorithm [26] to solve a multi-objective
deployment optimization problem. The performance of P-ACO is
compared with a Multi-Objective Genetic Algorithm (MOGA) by
using the Archeopterix tool platform [27]. The parameters for the
optimization problem are memory requirement, communication
frequencies, and event sizes for components (tasks), memory capacity,
network bandwidth, network delay for hosts (processors). Different from
our approach, this problem definition does not define parameters for
processing power, but includes additional network bandwidth and
network delay parameters.

Malek et al. [28] propose an extensible framework (Deployment
improvement framework - DIF) for improving deployment architecture
of distributed systems. The authors propose a generic approach that
can work with user defined Quality of Service (QoS) dimensions such
as latency, security and availability. The proposed framework realizes
four different multidimensional optimization problem solving
techniques, and provides several novel heuristics for improving the
performance of these techniques. Malek et al. [28] propose generic
QoS dimensions while QoS dimensions in our problem are fixed
(communication and execution costs). Further, the authors mention
that the largest scenarios they have worked with to date have involved
hundreds of software components and system services.

Švogor, and Carlson, use heuristics and Analytic Hierarchy Process
(AHP) [29] for weighted multi-objective design space exploration
[30]. The main objective of this study is to support systems architects
in complex allocation decisions in the early design phases.

Bahrami-Bidoni et al. propose an algorithm to find the best possible
allocation of parallel application tasks to processors in heterogeneous
distributed environment [30]. Hereby, the authors focus primarily on
minimizing the computation time and provide an evaluation ofthe
performance of the proposed algorithm for different problem types
including task interaction density, problem size, and communication
to computation time ratio.

In the context of task allocation in heterogeneous distributed
environments, Kang et al. propose an approach with the aim to
maximize system reliability [31]. The pro-posed approach is based on
the greedy search algorithm. Like other approaches, the performance
of the proposed solution depends on the characteristics of the problem
such as the number of tasks & processors, task interaction density of
application, and average communication to average computation time
ratio.

Dad et al. focus on multi-simulation graph distribution on multi-
core clusters for a FMI (Functional Mock-up Interface) [32] compliant
multi-simulation environment for continuous time systems [33].
The authors performed experiments on two clusters, running up to
81 simulation components (FMU) and using up to 16 multi-core
computing nodes to measure effectiveness of graph distribution.

https://doi.org/10.15344/2456-4451/2017/117

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 2. 2017. 117

Conclusion

Architecting large scale publish-subscribe systems is not tractable
due to the large design alternative space and the trade-offs between
different parameters such as execution cost and communication cost.

In this paper we have provided a general and systematic approach
together with the corresponding toolset Deploy-PS for finding the
feasible deployment of participants to nodes in publish-subscribe
systems. With the current approach we have achieved to solve the
deployment problem for a broader set of applications based on
publish-subscribe systems. The automatic generation of the various
architecture design alternatives supports the architecture trade-off
analysis for deriving a feasible solution. Our quantitative evaluations
have shown that both the approach and the Deploy-PS are very useful
in designing and evaluating publish-subscribe architectures. From an
algorithmic perspective the problem that we have addressed is known
as the Capacitated Task Allocation Problem. However, to provide
an effective solution we had to provide lots of effort in aligning the
algorithm to the architectural model and application, defining and
implementing the required metamodels, implementing the required
model-transformations and realizing the overall toolset. In our
future work we will aim to integrate various different algorithmic
implementations of the CTAP, and customize our metamodel and
toolset for specific publish-subscribe infrastructure.

Competing Interests

The authors declare that they have no competing interests.

References

1. Eugster P, Felber PA, Guerraoui R, Kermarrec A (2003) The many faces of
publish/subscribe. Journal ACM Computing Surveys 35: 114-131.

2. OMG (2007) Data distribution service for real-time systems, Ver 1.2.
3. Oracle (2002) Java message service specification, Ver 1.1.
4. IEEE (1998) IEEE STD 1278.1A-1998: Standard for distributed interactive

simulation – application protocols.
5. IEEE (2010) IEEE STD 1516-2010 Standard for modeling and simulation

(M&S) High Level Architecture (HLA) - framework and rules.
6. Pirim T (2006) A hybrid metaheuristic algorithm for solving capacitated

task allocation problems as modified XQX problems, The University of
Mississippi). ProQuest Dissertations and Theses.

7. Lo VM (1988) Heuristic algorithms for task assignment in distributed
systems. IEEE Transactions on Computers 37: 1384-1397.

8. Çelik T, Tekinerdogan B (2013) S-IDE: A tool framework for optimizing
deployment architecture of high level architecture based simulation
systems. Elsevier Journal of Systems and Software 86: 2520- 2541.

9. Çelik T, Tekinerdogan B, Imre K (2013) Deriving feasible deployment
alternatives for parallel and distributed simulation systems. ACM
Transactions on Modeling and Computer Simulation Journal, vol 23, 3,
Article 18 , July 2013.

10. Celik T, Koksal O, Tekinerdogan B (2014) Deploy-DDS: Tool Framework
for Supporting Deployment Architecture of Data Distribution Service based
Systems, In Proceedings of the 2014 European Conference on Software
Architecture Workshops (ECSAW '14). ACM, New York, NY, USA, Article
35.

11. Foster A (2013) Messaging Technologies, A comparison between DDS,
AMQP, MQTT, JMS and REST, v1.1, PrismTech Whitepaper .

12. Pardo-Castellote G (2008) Introduction to DDS, OMG Real-Time Workshop.
13. Pardo-Castellote G (2011) DDS:The data-centric future beyond message-

based integration, OMG C4I .
14. Mehrabi A, Mehrabi S, Mehrabi AD (2009) An adaptive genetic algorithm

for multiprocessor task assignment problem with limited memory, In
Proceedings of the World Congress on Engineering and Computer Science
2009 Vol II.

Citation: Tekinerdogan B, Celik T (2017) Architecting Feasible Deployment Alternatives for Publish-Subscribe Systems. Int J Comput Softw Eng 2: 117. doi:
https://doi.org/10.15344/2456-4451/2017/117

 Page 11 of 11

115. Stone HS (1977) Multiprocessor scheduling with the aid of network flow
algorithms, IEEE Transactions on Software Engineering 3: 85- 93.

116. Budinsky F, Steinberg D, Merks E, Ellersick R, Grose T (2003) Eclipse
modeling framework. Addison-Wesley Professional.

117. Voelter M, Kolb B, Eftinge E, Haase A (2006) From front end to code –
MDSD in practice.

118. Daly C (2004) Emfatic language reference.
119. Kolovos DS, Paige DF, Polack F (2006) Eclipse development tools for

epsilon. n Eclipse Summit Europe, Eclipse Modeling Symposium.
120. Dobrica LF, Niemela E (2002) A survey on software architecture analysis

methods”, IEEE Transactions on Software Engineering 28: 638-653.
121. Babar MA, Zhu L, Jeffrey R (2004) A framework for classifying and

comparing software architecture evaluation methods. In Proceedings of 5th
Australian Software Engineering Conference, April, pp. 309-319.

122. Kazman R, Bass L, Klein M, Lattanze T, Northrop L (2005) A basis for
analyzing software architecture analysis methods. Software Quality Journal
13:329-355,.

123. Kugele S, Haberl W, Tautschnig M, Wechs M (2008) Optimizing automatic
deployment using non-functional requirement annotations. In Leveraging
Applications of Formal Methods, Verification and Validation, Third
International Symposium.

124. Zheng W, Zhu Q, Di Natale M, Vincentelli AS (2007) Definition of task
allocation and priority assignment in hard real-time distributed systems, In
Proceedings of the 28th IEEE International Real-Time Systems Symposium
(RTSS '07). IEEE Computer Society, Washington, DC, USA, 161-170.

125. Aleti A, Grunske L, Meedeniya I, Moser I (2009) Let the ants deploy
your software - An ACO based deployment optimisation strategy. ASE
'09 Proceedings of the 2009 IEEE/ACM International Conference on
Automated Software Engineering, pp 505-509.

126. Doerner K, Gutjahr WJ, Hartl RF, Strauss C, Stummer C (2004) Pareto
ant colony optimization: A metaheuristic approach to multiobjective portfolio
selection. Annals of Op Res 131: 79-99.

127. Aleti A, Bjornander S, Grunske L, Meedeniya I (2009) Acheopterix:
An extendable tool for architecture optimisation of aadl models, in
MOMPES’09. IEEE Digital Libraries, pp. 61-71.

128. Malek S, Medvidovic N, Mikic-Rakic M (2012) An extensible framework for
improving a distributed software system's deployment architecture. IEEE
Trans Software Eng 38: 73-100.

129. T.Saaty, What is the analytic hierarchy process? Mathematical Models for
Decision Support, 48:109–121, 1988.

130. Švogor I, Carlson J (2015) SCALL: Software Component Allocator for
Heterogeneous Embedded Systems. In Proceedings of the 2015 European
Conference on Software Architecture Workshops (ECSAW '15). ACM, New
York, NY, USA, Article 66.

131. Kang QM, He H, Wei J (2013) An effective iterated greedy algorithm for
reliability-oriented task allocation in distributed computing systems. J Syst
Softw73: 1106-1115.

132. Blochwitz T, Otter M, Akesson J, Arnold M, Clauss C, et al. (2012) Functional
mockup interface 2.0: The standard for tool independent exchange of
simulation models." In Proceedings of the 9th International MODELICA
Conference; September 3-5; 2012; Munich; Germany, no. 076, pp. 173-
184. Linköping University Electronic Press.

133. Dad C, Vialle S, Caujolle M, Tavella JP, Ianotto M (2016) Scaling
of distributed multi-simulations on multi-core clusters. In Enabling
Technologies: Infrastructure for Collaborative Enterprises (WETICE), 2016
IEEE 25th International Conference on, pp. 142-147. IEEE.

This article was originally published in a special issue:

Software Architecture

Handled by Editor(s):

 Dr. Mohammad Alshayeb
 Information and computer science Department
 King Fahd University
 Saudi Arabia

https://doi.org/10.15344/2456-4451/2017/117

