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Introduction

Network-on-chip (NoC) is an emerging approach in multi-
processor system-on-chip (MPSoC) technology in which the design 
of efficient communication routing schemes is an important challenge 
[1-3]. In such systems, traditional solutions with shared-buses 
are replaced by interconnections with short links. As in computer 
networks or terrestrial transportation networks, a critical issue is to 
allow guarantee of traffic bandwidth, avoid collisions, deadlocks and 
livelocks. In such networks, Guaranteed Traffic (GT) approaches are 
often opposed to Best Effort (BE) methods [4]. A key feature of GT 
is to address conflict-free routing at the time of route computation, 
whereas BE deals with these problems only at the execution time 
of the routes. It is admitted that BE networks achieve good average 
performances, but that worst case performances are very hard to 
predict [5]. Furthermore, avoiding deadlocks in BE networks implies 
restrictions on routing and/or extra-costs due to virtual channel 
splitting. On the contrary, GT methods ensure the application 
real-time requirements and avoid the possibility of contention and 
deadlocks while using irregular topologies that allow significant 
power savings. 

In this paper, we present a combinatorial optimization problem 
that allows guaranteed traffic with conflict-free routing. The 
communication is wormhole. Wormhole routing operates by 
advancing the head of a message directly from incoming to outgoing 
links. Packets are stored in the links while advancing through the 
networks in a pipeline fashion. The header packet contains the 
specification of the path to follow, and packets must remain contiguous 
in the network links. No memory buffer is needed in the routers 
to store packets. Transmissions are synchronous with a common 
clock that defines the time unit, called a time-slot. To efficiently 
schedule messages through shared links, we adopt the technique of 
time division multiplexing. Messages are emitted periodically with 
a period of length T. The value of time T is determined according 
to the communications bandwidth constraints during the design 
phase. The size of T, for all interconnected Intellectual Property 
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(IP) components, is standardized according to the minimum of the 
maximum number of packets received by the IPs [6,7]. The number 
of packets by message defines a given bandwidth between a source 
and a destination node. At each source node, a TDMA (time division 
multiple access) table specifies the departure times of each message 
within the possible time-slots 0, . . . ,T−1. This technique of time-
multiplexing was previously presented and used in [6,8-11. But the 
emphasis was mainly put on architecture considerations, and the 
combinatorial optimization problem succinctly addressed with some 
ad hoc heuristics. No reproducible benchmarks were proposed to 
allow comparative evaluations between the methods. In this paper, 
and for the first time, we state the optimization problem formally, and 
relate it to other standard routing problems. We focus on its solution 
using standard local search techniques, and provide a set of reusable 
benchmarks to compare this work’s results to future works on this 
problem. It can be used to calculate the best communication paths for 
implantation in the NoC during the design.

Other works deal with different resolution techniques. The 
interested reader is referred to Ge and Wu [12]; Lin et al. [13]. A recent 
survey of these routing methods in NoC is presented in Benmessaoud 
and Koudil [14].

Given a graph that represents a network topology, and a set of K 
source-destination messages of variable sizes that are periodically 
emitted based on a temporal cycle of length T, the goal is to compute 
K source-destination paths and to set their message emission dates, 
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Abstract

We study a combinatorial optimization problem for conflict-free routing in a Network-on-Chip. Based 
on time division multiplexing and cyclic emission, the problem consists in finding a set of K shortest 
paths, such that packets will never conflict through the network but can use shared communication links 
in an efficient way. The model allows to avoid collisions and deadlocks in irregular network topologies, 
while minimizing latency. A time-expanded graph approach is retained for the solution process. First, 
we present a mixed integer linear programming model for the problem. Second, a set of shortest paths 
operators are combined within three iterated local search schemes able to quickly generate admissible 
solutions for the problem. To evaluate the method, experiments are conducted on a set of five real-life 
problem instances, and on many artificial unstructured random instances derived from them. We detail 
the problem of traffic instance generation, that also illustrates the designer’s task of flow decomposition 
between communicating components. Intensive simulations illustrate the accuracy of the solution 
method.
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such that packets will never clash through the network. The objective 
is to minimize the paths total length in order to minimize total power 
consumption and network use rate. The length of a path is expressed 
in time-slots.

One way to address such a problem of multi-path findings where 
time plays an important role is by using a time-expanded graph. A 
time-expanded graph (TEG) contains one copy of the node and arc 
sets of the original static graph for each discrete time step considered. 
As well as for time-division multiplexing [9], this structure is often 
useful in terrestrial transportation problems, particularly in routing 
with time-windows. As reviewed by K¨ohler et al. [15], the TEG 
concept allows solving a variety of flow-over-time problems by 
applying algorithmic techniques developed for static network flows. 
As an example, we use a modified Dijkstra algorithm able to compute 
a single shortest path in the TEG in pseudo-polynomial time. We 
will see how such a procedure drastically improves performance of 
the heuristic approach for the whole problem. Based on the TEG 
structure, we first present an integer linear program (ILP) for the 
problem in order to address it in an exact way with a standard solver. 
We also propose three heuristics to address the problem based on a 
standard iterated construction-improvement scheme. They are an 
iterated random search, and an iterated local search declined within 
two versions, greedy descent and steepest descent respectively. 
The basic operators are a greedy parallel construction method, a 
neighborhood operator, a modified Dijkstra algorithm, and man-
agement date operators. Even though deciding feasibility is NP-hard, 
our heuristic approaches attempt to generate feasible solutions as 
fast as possible. In experiments, we illustrate how the progressive 
introduction of operators drastically improves performances. 
Intensive experiments are performed on a set of real-life instances and 
on artificial random traffic configurations. We present the problem of 
traffic instance generation as a maximum flow problem. It illustrates 
the designer’s problem of bandwidth decomposition and casts a 
light on the prerequisites of a guaranteed traffic approach. Intensive 
simulations illustrate the robustness of the approach when addressing 
a wide range of possible traffic configurations.

In Section 2, we state the routing problem, called Cyclic K-conflict-
free shortest Paths Problem (CKPP). We relate the problem to the 
literature of shortest paths routing. In the same section, we justify 
the use of a time-expanded graph structure to solve the problem 
and present an ILP model of CKPP. In Section 3, we present the 
local search methods retained for the solution process. Based on an 
iterated local search scheme, we detail three versions of conducting 
the improvement search. Section 4 is devoted to empirical evaluations 
of the algorithms on benchmarks representative of the application 
domain, and also on unstructured random instances. Then, the last 
section is devoted to the conclusion and further research.

Definition of the Routing Problem

We first state the routing problem and relate it to similar 
combinatorial optimization problems in the literature. We justify the 
use of a time-expanded graph approach for the solution method, and 
also present a mixed integer linear program for the problem. 

Problem statement

A NoC-based architecture consists of a set of interconnected 
Intellectual Property (IP) components. Such IPs are typically general 
purpose or specific processors, dedicated hardware accelerators,
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and peripheral controllers or memories in a single chip. They 
are emitters and/or receivers of messages. The components are 
connected by routers according to a given network topology. Each 
IP is associated with a unique a router through its network interface 
(NI). More formally, a NoC can be modeled by a directed graph G = 
(V,A), where the set V of vertices represents the routers and IPs, and 
the set of arcs A   V ×V represents the directed transmission links 
between them. Here, we consider wormhole routing. Each message 
μ is made of a sequence of l(μ) contiguous packets, with |l(μ)| = lμ 
> 0, that are transmitted along the arcs of the network. The header 
packet contains a specification of the message origin/destination 
path, while other packets are application-dependent data. A router 
has no memorization capacity, it only retransmits packets as specified 
by the header packet. The NoC is synchronous, it is cadenced by a 
common clock shared by all its components. Each arc has a capacity 
of 1 packet by unit of time, called a time-slot or time-step. The packets 
are transmitted in a contiguous way. Hence, if a physical occurrence 
of a message emitted at time t(μ) follows the path i, i+1, . . . , i+n, with 
i Є V, its packets will cross the arc (i, i+1) at the consecutive time-
steps t(μ)+i+q,q = 0, . . . , lμ −1. We say that an arc may be “occupied” 
by a packet at a given time-slot, otherwise it is said “free” at a given 
time-slot.

To guarantee transfer rate, a source repeatedly emits messages based 
on a period or cycle T. A given bandwidth is specified by a message 
size, i.e., the number of packets emitted by period T. Hence, a message 
can be seen as a class of its physical occurrences at each cycle. This 
allows to consider classes of time-slots for arc occupations. If an arc is 
occupied at time-slot t, it will also be occupied at timeslots t +λT, for 
all nonnegative integer λ. We say that an arc is occupied at t modulo 
T to express its recurrent occupation by a packet. We will often talk 
of a packet, or message, to refer to the class it represents. When 
transmitted through the network, two packets are said conflict-free if 
they never clash, i.e., cross an arc at the same time-slot. By extension, 
paths or messages are said “conflict-free” or “contention-free” when

their related packets never conflict (two at a time). Since paths may 
share common communication links, and since we want to achieve 
guaranteed traffic, paths and emission dates have to be stated such 
that two packets will never clash. We assume that paths may contain 
circuits, only when those circuits do not contain the destination or the 
origin of the path. Indeed, if the origin appears in a circuit, then the 
message can be send later without that circuit, and if the destination 
appears in a circuit, then all the corresponding traffic is useless and can 
be removed. However, a circuit that does not involve the destination 
nor the origin may be useful to wait for a region of the network to 
be less heavily loaded. Figure 1 illustrates two conflict-free source/
destination paths in an already occupied NoC, with an emission cycle 
of length T = 5. Two packets are emitted from source 1, and two 
packets from source 2. A table of the available time-slots (modulo T) 
that packets can use as they advance through the network is shown

Figure 1: Two message transfers in an occupied NoC.
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next to each arc, and filled squares are unavailable time-slots. We can 
see that packets cross the shared arcs at distinct time-slots modulo 
T and never conflict. We can now precisely state the combinatorial 
optimization problem called “Cyclic K-conflict-free shortest Paths 
Problem” that we address in this paper.

Cyclic K-conflict-free shortest Paths Problem (CKPP) 

A problem instance consists in a directed graph G = (V,A), an 
emission cycle of length T, and a set of K messages defined by

where (sk,dk) is an origin/destination pair, and lk the number of 
packets of the message. The goal is to find the departure times of 
the messages t(μk) Є [0,T −1], μk Є M, at each source node and the 
origin/destination paths of minimum total length for conveying the 
messages, such that the paths are conflict-free.

We should note that the objective of the problem is the total 
length of the paths, whereas the constraints reside in the temporal 
occupation of the arcs such that paths are conflict-free. It is worth 
noting that the problem is NP-hard in the strong sense for general 
graphs as well as for planar graphs or grid networks. This can be 
seen by relating the problem to the K-Edge-Disjoint Shortest Paths 
problem (EDP) [16]. This well known problem has different versions 
depending whether we ask for vertex or edge disjoint paths between a 
set of K source-sink pairs. This is one of Karp’s [17] original NP-hard 
problems. By restricting CKPP to only those instances for which T = 
1, we retrieve the EDP. This problem is known to be NP-hard in the 
case of planar graphs [18], even when stated in the grid and when path 
lengths are constrained by a constant [19]. Then, since CKPP remains 
NP-hard when the number T is bounded by a constant, it follows that 
it is NP- hard in the strong sense. Similarly, the CKPP can be seen as 
an extension of a Bin Packing problem, where arcs stand for bins of 
capacity T, and the K messages for items of size qk.

A similar problem is the unsplittable flow problem (UFP). It is a 
generalization of EDP where every edge e has a positive capacity ce; 
and every pair has a demand fk > 0. The demand from sk to dk has to 
be routed in an unsplittable manner, i.e., along a single path from sk 
to dk. For every edge e the total demand routed through that edge 
should be at most ce. The problem adds a capacity constraint to the 
EDP. It is different from CKPP since it allows variable arc capacities, 
discarding temporal aspects on arc occupation. Generally, classical 
flow models only deal with static situation. A well-known problem 
that introduces time dependent transit constraints is the one-to-one 
shortest path problem with time windows (SPPTW) [20]. The aim 
is to compute a shortest path respecting the given time-windows 
on arcs occupation. This kind of problems often arises in terrestrial 
transportation, road traffic control, and vehicle routing applications. 
An example is Automated Guided Vehicles (AGVs) [21] technology 
for optimizing large scale production and logistic systems. The 
SPPTW is NP-hard but several pseudo-polynomial time algorithms 
are available to solve it exactly [20,22,23]. A sub-problem of our CKPP 
is to compute a one-to-one source-destination path in an already 
occupied NoC. The available (“free”) time-slots on each arc stand for 
time-windows. Hence, a modified Dijkstra algorithm can be designed 
to compute such a single path in an efficient way. It will be used as an 
operator into the heuristic methods presented in this paper to address 
the whole CKPP.
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Time-expanded graph approach

We address the problem by using a spatiotemporal graph as a 
memory of temporal arc occupation. This memory specifies for each 
arc of the network, and each time-slot in interval [0,T −1], whether or 
not the arc is occupied by a given packet at the given time slot. We say 
that an arc is “free” or “occupied” at time t modulo T. Hence, an array 
of booleans of size T is associated to each arc. Such a spatiotemporal 
graph is generally called a time-expanded graph (TEG)[15]. In its 
standard definition, a TEG contains one copy of the node set for each 
discrete time step. This is a time layer. For each arc in the original 
graph, there is an arc copy between each pair of time layers in the 
TEG. When time occupation is cyclic, as in our case, each layer t is 
connected to its next (t +1) modulo T layer. The notion was presented 
by Ford and Fulkerson [24] in order to model flow over time. The 
memory size needed is O(N2 ×T) for general graphs or O(N × T) for 
planar graphs, with N the number of nodes. As reviewed by K¨ohler 
et al. [15], the TEG concept allows to solve a variety of flow-over-
time problems by applying algorithmic techniques developed for 
static network flows. It is worth noting that the size of the time-
expanded network is only pseudo-polynomial in the input size, since 
the number T is encoded with log(T) bits. Hence, we should address 
only instances of moderate size T. Fortunately, since T is always small 
(maximum of 47 time-slots in our applications), the TEG approach is 
a natural way to deal with shortest path findings that would guarantee 
traffic in a NoC.

Mixed integer linear programming model

We first propose an ILP of the CKPP. The model is packet oriented. 
A NoC is composed of a set I of IPs (|I| = P) and a set R of routers (|R| 
= N). A set P of packets (|P | = Q) with a specific origin and destination 
(taken from I ) has to travel across the NoC without conflicts and in 
the shortest possible time. The set of IPs and routers form the nodes of 
the graph V ={0, . . . ,P−1,P, . . . ,P+N−1}. The set of arcs is denoted by 
A     V ×V. There are |Q| packets indexed by q, q Є {1, . . . ,Q} such that      
where lk is the size of message as stated in the CKPP definition. Each 
packet q starts and ends in an IP, i.e. has an origin sq in I , sq Є {0, . . . 
, P−1} and a destination dq in I , dq Є {0, . . . , P−1} with sq ≠ dq. Time 
is discretized, t Є {0, . . . ,T −1} is a time slot, and T is the TDMA size. 
The system is pipeline-based, thus, time slots t and t +T are identical 
for all t. Let xi, j,q,t be a boolean variable set to 1 if packet q uses arc (i, 
j) during time slot t, 0 otherwise. With the previous definition, we can 
state the constraints and the objective function as a 0-1 integer linear 
program in Equations (1-11) below.

1. Arc capacity: Each arc is used for conveying at most one packet per 
unit of time.

2. Packet origin: For all q Є {1, . . . ,Q}, packet q originates from IP sq 
Є {0, . . . ,P−1}.

3. Packet destination: For all q Є {1, . . . ,Q}, packet q has to reach IP 
dq Є {0, . . . , P−1}.
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4. Packets conservation: For all instant time t Є {0, . . . ,T −1}, for all q 
Є {1, . . . ,Q} and for all i Є {P, . . . ,P+N −1}, if packet q reaches router 
i at time t, then it has to leave that router at time t +1.

5. Origin IPs are not reentrant: For all instant time t Є {0, . . . ,T −1}, 
for all q Є {1, . . . ,Q}, packet q cannot enter IP sq Є {0, . . . ,P−1}.

6. Destination IPs are not reentrant: For all slot time t Є {0, . . . ,T 
−1}, for all q Є {1, . . . ,Q}, packet q cannot leave IP dq Є {0, . . . ,P−1}.

7. Origin IPs generate at most one packet at a time: For all time slot 
t Є {0, . . . ,T −1}, for all IP i Є {0, . . . ,P−1}, the sum of the packets q 
sent out of i and such that sq = i must be less than one.

8. Destination IPs consume at most one packet at a time: For all time 
slot t Є {0, . . . ,T −1}, for all IP j Є {0, . . . ,P−1}, the sum of the packets 
q sent to IP j and such that dq = j must be less than one.

9. Message constraints: A message is modeled as a sequence of 
packets that must have the same route in the NoC. More formally, 
message k Є {1, . . . ,K} is an ordered set of packets {ωk,1, . . . ,ωk,l(k)} 
where l(k) is the length of message k (i.e., the number of packets in 
the message). ωk,1 Є {1, . . . ,Q} is the first packet and ωk,l(k) is the last 
packet of message k. In any consistent instance, all the packets of a 
message must have the same origin and destination router, i.e., they 
must satisfy: sq = sq' and dq = dq' 
                . 

The message constraints are enforced as follows:

These constraints say that if packet wk,q occupies arc (i, j) at time 
t, then packet ωk,q+1 must occupy this arc at time (t+1) mod T. The 
equality also enforces that if packet ωk,q does not occupy arc (i, j) at 
time t, then packet ωk,q+1 cannot occupy this arc at time (t +1) mod T. 
Thus, all the packets of a message move along the same route within 
a time shift.

10. Packet destination: The destination dq of packet q is a terminal 
node of the path of the packet q. For all time slot t Є {0, . . . ,T −1}, for 
all q Є {1, . . . ,Q}, the packet q cannot go to another destination other 
than its destination dq.
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11. Objective: Minimize the total length of all paths for all packets

When compared with the CKPP problem definition which is a 
slightly more general formulation, Constraints 7 and 8 are specifically 
added to take into account the hardware conditions of emission 
and reception. These conditions state that each IP node implements 
a TDMA (Time Division Multiple Access) table that can only send 
one single packet at each time slot occurrence. A router node, at 
the difference of an IP node, allows packets to cross at a given time 
slot following the different directions stated by the communication 
graph. An IP node will always be connected to a single router and its 
emission capability restricted by the TDMA mechanism such that no 
more than one packet will be
emitted or received at each time slot. 

Iterated Local Search Approaches

Iterated local search main loop

We choose one of the simplest ways to address the problem by means 
of heuristic methods, that is, by a simple iterated local search scheme 
that exploits randomized choices [25]. The main loop simply iterates 
a search many times by restarting the algorithm from a new random 
starting point. We identify two levels of operations. The first level puts 
the emphasis on the fast construction of partial solutions. It manages 
the message emission dates and then, applies a set of construction 
operators. Starting from such a solution, the second level applies 
local modifications on the path set in order to “improve” or “repair” 
the solution. Improvement is based on a neighborhood operator 
that explores a smaller region around the current solution. The 
construction search is followed by an improvement search as often in 
heuristic methods. Hence, the iterated approach respectively, alternates 
large and small moves in the search space. Large construction moves 
are for diversity generation, whereas small improvement moves for 
intensification of the search in a particular region. The pseudo-code 
of the main loop is presented in Algorithm 1. The two internal calls 
“constructSolution” and “improveSolution” respectively correspond 
to the construction trial followed by the improvement trial. These two 
procedures are detailed in the next sections. In each case, possibly non 
admissible solutions can be generated. That is why solutions must be 
ranked according to the hierarchical two objectives of respectively the 
number of built paths and the paths length. Maximizing the number 
of built paths is the first objective, whereas minimizing the paths 
length is the second objective. The “selectBest” procedure performs 
such a ranking.

Algorithm 1: Iterated local search method
Output: BestSolution
begin

S←initialize(); // Initialize data structures and emission dates
count ←0;
while count < maxCount do
	 count ←count +1;
	 S←constructSolution(S);
	 S←improveSolution(S);
	 BestSolution←selectBest(S,BestSolution);
	 return BestSolution;
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Construction loop

Here, we present the structure of the construction procedure 
referred to as constructSolution in the main loop of Algorithm 
1. The procedure is detailed in Algorithm 2. Its role is to quickly 
generate new candidate solutions, admissible or not, that present the 
maximum number of paths built. To do so, the procedure iterates 
a basic construction process maxConstruct times. The first type of 
operations is the management of the message departure dates. Once 
the emission dates are set, a greedy parallel construction operator 
tries to quickly and simultaneously generate the K conflict-free paths. 
Then, a modified Dijkstra algorithm, which is more time consuming, 
only tries to rebuild the residual “blocked” paths one by one. The 
selectBest procedure performs a ranking as explained in the previous 
section. The main operators are detailed below.

Emission date management. As mentioned in the problem 
definition, the construction of admissible source/target paths mainly 
depends on the message emission dates that are specified in each

Algorithm 2: constructSolution
Output: S Є Solution, maxConstruct
begin

count ←0;
while count < maxConstruct do
	 count ←count +1;
	 S← permuteDepartureDates(S);
	 S←translateDepartureDates(S);
	 Initialize the TEG; // all arcs are set "free" at each time-slot
	 Remove the all paths from S;
	 S←constructSolutionPar(S); // Greedy parallel construction
	 S←constructSolutionWithModifiedDijkstra(S);//Construct  

                 the remaining paths one-by-one in TEG
	 BestSolution←selectBest(S,BestSolution);
	 return BestSolution;

TDMA table of each source node in the interval [0,T −1]. 
Assuming that the emission dates are first set at initialization, it 
is necessary to make evolve such dates while constructions are 
reiterated. Two operators are proposed in order to manage emission 
dates. They are respectively named permuteDepartureDates and 
translateDepartureDates in Algorithm 2. The first operator is applied 
with probability 0.5. In each operator, a given TDMA table (i.e., a 
source node) is first chosen randomly. The first operator applies 
a random permutation between two emission dates of that TDMA 
table. The second operator applies a one time unit forward translation 
to the TDMA emission dates.

Greedy parallel construction. This procedure, called constructSol-
utionPar in Algorithm 2, greedily builds the origin/destination paths 
step by step and in a parallel way. Before this procedure can proceed, a 
set of routing tables must first be computed at the whole initialization. 
They embed the costs of the shortest paths from each location to 
all destination nodes in the original NoC graph. These tables are 
computed only once at the initialization of the main algorithm. The 
origin/destination paths are built step by step, i.e., time slot by time 
slot, and jointly. An image of the behavior of the algorithm is that 
of several waves that propagate in all directions at constant speed, 
from the source node until it reaches the destination node or not. 
Each iteration step corresponds to a given time-slot, and to the 
introduction of the next vertex into each path. The next router is 
chosen according to the minimization of its distance to the destination 
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node, and by verifying in the TEG that the corresponding arc is free 
for the message packets. When several choices are available, the next 
vertex is chosen randomly. Then, the arc status structure is updated in 
the TEG. The process continues until all messages have reached their 
destination node, or no vertex insertion is possible. Then, a path is 
said “constructed” or “blocked”. The temporal complexity is O(N ×T2) 
for planar graphs, or graphs with constant degree, and O(N2×T2) for 
general graphs, with N the number of nodes and T the emission cycle. 
This is a rough estimation. A node can be visited as soon as there is 
an available time-slot in some incident arc, then it can be visited at 
most O(N ×T) for general graphs and messages of size 1. The number 
of time-slot examinations at each node depends on the degree of the 
node and message size, then it is at most O(N ×T) for general graphs 
and a message of size T.

 Dijkstra algorithm in TEG. We have designed a breath-first-search 
algorithm able to construct a one-to-one shortest path in an occupied 
time-expanded graph. Here, the TEG may contain “free” or “occupied” 
arcs as part of the input. The procedure is called constructSolution
WithModifiedDijkstra in Algorithm 2. The term Dijkstra is used in 
reference to the function of the algorithm, that produces a shorter 
path, and to the fact that it is a simplification of the classical Dijkstra 
algorithm with unit costs associated to the arcs. The algorithm is 
extended to take into account the cyclic nature of the problem and 
multi-packet traveling. Each iteration of the algorithm corresponds to
a single time-slot increment, so that the path length increases of one 
time-unit. Thus, all the successors of a visited node are necessarily 
in minimum distance from the origin and will constitute the nodes 
to visit in the next iteration. A main simplification over the classical 
Dijkstra, is that we do not have to manage an unordered list of 
successors and select lower cost one. All successors are at lower cost 
necessarily and must be examined. As well as in Dijkstra’s algorithm, 
multiple predecessor node choices are possible. In this case, only one 
of the possible predecessors is selected randomly. Then, only one 
single path is computed based on these random choices since the 
embedding metaheuristic only necessitates one random single path at 
each call of the Dijkstra algorithm. Randomness must allow diversity 
of the paths found due to multiple calls. The temporal complexity is 
O(N ×T2) for planar graphs, and O(N2×T2) for general graphs. A node 
of the communication graph cannot be visited more than T times, 
otherwise the visit will constitute a loop in the TEG where nodes are 
duplicated T times. The number of time-slot examinations at each 
node depends on the graph degree and message size, then, it is at most 
O(N×T) for general graphs and a message of size T.

Another important difference with a standard Dijkstra algorithm 
arises from the cyclic and multipacket nature of the shorter path 
problem. Here, arcs occupation must be dynamically updated into 
the TEG as the path is currently built. This is necessary in order to 
avoid self-conflicts for a given multi-packet message, since a header 
packet could hit queue packets at the same emission cycle or at 
different emission cycles. The situation can occur if the length of a 
path is larger than the period T, but it can also occur with a message 
with length sufficiently large such that the header packet could hit 
its queue packets according to a loop in the path, regarding the NoC 
communication graph. This dynamic change of TEG occupation 
status has a direct impact on the conditions of optimality. In the case 
of a single packet message, the algorithm guarantees optimality in 
time polynomial with the TEG size, that is, in pseudo-polynomial 
time over the CKPP instance size. This naturally follows from the 
breath-first- search algorithm behavior. However, in the case of a 
multi-packet message and due to dynamic updates of arc occupation, 
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optimality is no longer guaranteed. It arises that further arc/vertex 
choices should depend on the previous choices made. This is an 
indication of a more complex and specific problem. We actually do 
not prove some NPhardness for that specific subproblem, nor prove 
that a polynomial solution exist. At the moment of writing, we let the 
complexity analysis of that specific subproblem open. However, the 
less the number of packets, the more the probability to get an optimal 
one-to-one path. The shorter will be the path, the less will be the 
probability of conflict. Some possible solution that could be envisaged 
to guaranty optimality could be to delegate the single shorter path 
computation to the ILP method, once adapted to a given occupied 
TEG as an input. This could be envisaged in further work that would 
combine exact and heuristic methods.
 
Local search improvement algorithms

We now detail the improvement procedure, called improveSolution 
in Algorithm 1. While the construction procedure generates diversified 
solutions starting from random initializations, the improvement 
procedure allows to perform more or less smaller steps in a smallest 
region of the solution space in order to transform non admissible 
solutions to admissible ones. The general scheme of an improvement 
procedure consists of embedding a neighborhood operator within 
some search strategies. We first detail the neighborhood operator, 
then we propose three versions for the search strategy.

The pseudo-code of the neighborhood operator, called generate-
Neighbor, is given in Algorithm 3. Because of the many paths 
constructions that need to be performed, we choose to operate at the 
level of paths deconstruction and reconstruction. The neighborhood 
operator simply suppresses a subset of the solution paths, with 
the removeMessages procedure, and hence tries to construct the 
solution again from that partial solution. To do so, it uses the greedy 
parallel construction procedure followed by the one-to-one Dijkstra 
algorithm, that were specified for the construction phase (cf. previous 
section). The number of removed paths stands for the neighborhood 
size, that can be more or less large. It is intended that the new paths, 
together with the previously “blocked” paths, would have a new 
chance to being completely reconstructed by the operator. Since 
many random choices are possible during path construction, the 
neighborhood can be seen as large, and the method interpreted as a 
“reparation” procedure, following the ruin and recreate principle as 
formulated by Schrimpf et al. [26].

Algorithm 3: generateNeighbor
Input: S Є Solution, nbMsg Є Integer
Output: NewSolution
begin

// Remove the nbMsg paths from S and update the TEG
NewSolution←removeMessages(S,nbMsg);
NewSolution←constructSolutionPar(NewSolution);//Greedy  

     parallel
	 construction
N e w S o l u t i o n ← c o n s t r u c t S o l u t i o n W i t h M o d i  

   fiedDijkstra(NewSolution);//Construct the remaining paths one-by- 
    one in TEG

return NewSolution;

Three versions of a search strategy are considered that embed the 
neighborhood operator. They are respectively a basic random walk 
search, that we call iterated random search (IRS), as specified in the 
pseudo-code of Algorithm 4, and two local search schemes, that are, a 
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greedy descent local search, also called first improvement local 
search (ILS-FI), specified in Algorithm 5, and a steepest descent local 
search, also called best improvement local search (ILS-BI), specified 
in Algorithm 6. The iterated random search simply makes evolve 
the current solution by performing a given number of successive 
neighborhood moves, and then selects the best solution encountered. 
The method is very simple since very few operations are performed at 
each iteration step. This can be seen on Algorithm 4. On the contrary, 
the two local search schemes involve two internal loops each. As shown 
in Algorithms 5 and 6, the outer loop controls the depth of the search.

Algorithm 4: iteratedRandomSearch
Input: S Є Solution, maxImprove, K number of messages
Output: BestSolution
begin

count ←0;
while count < maxImprove do

	 count ←count +1;
	 S←generateNeighbor(S, rand(1,K));
	 BestSolution←selectBest(S,BestSolution);

return BestSolution;

Algorithm 5: localSearch first-improvement (ILS-FI)
Input: S Є Solution, K number of messages
Output: BestSolution
begin

BestSolution←S;
improvementFound ←true;
while improvementFound /* depth of the search */ do

count ←0;
improvementFound ← false;
while
count < neighborhoodSampleSize and not improvementFound  

         /* pivot rule */ do
count ←count +1;

S' ←generateNeighbor(S, rand(1,K)) /* neighborhood move */;
if isBest(S,BestSolution) then

	 BestSolution←S';
	 improvementFound ←true;

S←BestSolution;
return BestSolution;

Algorithm 6: localSearch best-improvement (ILS-BI)
Input: S Є Solution, K number of messages
Output: BestSolution
begin

BestSolution←S;
improvementFound ←true;
while improvementFound /* depth of the search */ do

count ←0;
improvementFound ← f alse;
while count < neighborhoodSampleSize /* pivot rule */ do

count ←count +1;
S' ←generateNeighbor(S, rand(1,K)) /* neighborhood move */;
if isBest(S',BestSolution) then

BestSolution←S';
improvementFound ←true;

      S←BestSolution;
   return BestSolution;
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The algorithms stop when no improvement has been found. Because 
all algorithms are random, there is no guarantee that a local minimum 
has been reached even if the algorithm does not make any progress. 
A given solution constitutes the pivot element around which are 
performed the neighborhood search. Hence, the inner loop, that is 
the difference between Algorithms 5 and 6, deals with the pivoting 
rule, that determines to which better neighboring solution to move 
to. When compared to the iterated random search above, note that 
a supplementary variable S' has to be added to allow testing the 
improvement move. In the greedy descent local search version, the 
first encountered best solution becomes the new pivot element. In 
the steepest descent version, it is the best solution within the whole 
neighborhood that must be selected as the new pivot element. Here, 
since the neighborhood is large and the method stochastic, the 
procedure only examines a random sample of the neighborhood 
set. The sample size is represented by the neighborhoodSampleSize 
parameter in Algorithms 5 and 6. In experiments, it is set to 
100 neighbors to examine. Another important parameter is the 
neighborhood size itself, which is the maximum number of paths 
selected for suppression in a single neighborhood move. Its impact 
on performances will be investigated in experiments. It is set to 
a maximum of nbMsg paths suppressed, with K being the total 
message number. This means that at each move, the exact number of 
suppressions is chosen randomly between 1 and K paths. Note that 
this parameter is shared by both IRS and ILS methods.

Experiments

To evaluate the proposed algorithms, five real-life problems and 
many random artificial derived instances are considered. They are all 
based on four different NoC topologies of increasing sizes, respectively 
named N1, N2, N3, N4 in Figures 2-7 in the appendix. The five real-
life problem instances were stated by Dafali [7] as representative of 
concrete real-life applications. The TDMA specifications are detailed 
in Figures 2-7. Four parameters characterize each instance. Instance 
N1 is the smallest one, with (T,N,P,K) = (6,7,4,12), whereas instance 
N4 is the largest one with (T,N,P,K) = (47,36,35,209). Next, we will 
attach the (T,N,P,K) quadruplet to the instance name when necessary. 
Instances N2 and N3 are of medium sizes. The N3 network topology 
corresponds to two test cases, named N3A, N3B. In Figure 8, instance 
N3A has the first three TDMA tables specified beside the components 
IP0, IP1, IP2. Instance N3B includes the three TDMA tables specified 
just below.

The proposed heuristics are developed in C++ and have been run 
on a PC Intel Core Duo 3.0 GHz computer, where only 1 core was 
used. All the tests are performed on a basis of 100 runs per problem 
instance. For each test case, we evaluate the average total length value 
and the average computation time based on 100 runs. The average 
computation times are reported in seconds. The length is expressed in 
time-slots. The algorithms are configured in such a way that they stop 
their execution once an admissible solution has been found. Hence, 
they are used as construction methods in this experiment. Here, 
the hard task is the ability to quickly generate admissible solutions 
with minimal lengths the number N of routers, the number P of IP 
components, i.e., the source-destination nodes, and the number K. In 
local search, the sample size as stated by the neighborhoodSampleSize 
parameter of Algorithm 4 is set to 100. Other algorithm parameters 
will be specified further in this section. To assess the reliability of 
the statistical results, 95% confidence intervals for the sample mean, 
based on standard deviation over the 100 runs, are computed when 
necessary. 
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We evaluate the performance of the methods within three 
sets of experiments. First, we study the impact of two important 
components, that are, the improvement procedure itself, and the 
addition of the one-to-one shortest path Dijkstra algorithm in TEG. 
In a second set of experiments, we present a comparative evaluation 
of the different methods, including the ILP solution and the iterated 
search methods, when applied to the five real-life problems. We also 
study the impact of the neighborhood size on performances. In a third 
set of experiments, we evaluate the robustness of the approach against 
many randomly generated traffic configurations, based on the original 
NoC topologies. We discuss the problem of generating valid instances 
in relation to a maximum flow problem, and evaluate the algorithm 
performances as the saturation traffic level, i.e., number of injected 
packets, increases.

Impact of the main algorithmic components

In this section, we study the performance of different combinations 
of the construction/improvement operators and of the Dijkstra 
procedure. We use the iterated random search (IRS) method 
specified by Algorithm 1, in which the construction method 
constructSolution corresponds to Algorithm 2 and the improvement 
method improveSolution corresponds to Algorithm 4 to perform 
the experiments. Adding or not the Dijkstra component, we study 
the impact of construction and improvement operations when 
adjusting the maxCount, maxConstruct, and maxImprove algorithm 
parameters. The goal is to illustrate the importance of each added 
new algorithm component that improves both computation time and 
quality of solution substantially at the same time. The algorithm stops 
once an admissible solution is found or when the maximum number 
of iterations is reached.

Results are reported in Table 1. The procedure was executed on the 
N3A(9-15-10-27) instance of Figure 8, for four different combinations 
of the IRS loops. Results are averaged over 100 runs. Since it may be 
the case that no admissible solution is produced during a run, we 
report in a column named “Paths built”, the average percentage of 
built paths related to the message number. We also report the average 
computation time in seconds in the column named “CPU time”, 
and the number of feasible solutions obtained over the 100 runs in 
column “Feas. sol.”. Numerical results are given within six rows for 
construction phase only, with construction respectively iterated 
1, 1000, and 100000 times. For each configuration of the iteration 
number, results are reported with or without the Dijkstra component. 
The last configuration corresponds to the introduction of the 
improvement loop and reiteration of the construction/improvement 
phase. For this experiment, the algorithm parameters (maxCount,m
axConstruct,maxImprove) will take the values (50, 1000, 1000). The 
outer loop reiterates 50 times the construction/improvement phases, 
each one executing 1000 internal iterations.

Comparative evaluation on the real-life benchmark set

We now compare the different approaches considered in this paper, 
including the ILP solution, on the five real-life benchmarks. We also 
evaluate solutions for three different values of the neighborhood 
size. The three heuristics are specified in Algorithms 1-6 with their 
default parameters. In the iterated random search (IRS) method, the 
combination of construction/improvement operations are set to the 
values (maxCount,maxConstruct,maxImprove) = (50,1000,1000). In 
the iterated local search (ILS) methods, the first or best improvement 
local search replaces the random walk improvement procedure of the
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The last two columns respectively report the average value over the 
whole benchmark set and the 95% confidence intervals computed 
based on standard deviation. We can observe that the three 
heuristics produce solutions with similar length values, then, of 
similar quality. A slight improvement of the computation time can 
be observed for ILS methods against IRS. However, there is place 
for improvement for the ILS methods, since as usual for heuristics 
[24], complete copy of data structures could be avoided by a better 
implantation of the local neighborhood operation. The ILP was 
solved using the GLPK1 integer linear programming solver. Two 
configurations of the ILP solver are considered and the results 
reported in the last four rows in Table 2. In the two rows “first-sol”, 
are reported the values corresponding to the first admissible solution 
obtained during a run. This solution is not optimal. In the two rows 
“opt-sol”, are reported the optimal solutions found. Only the two 
smallest instances were solved successfully by the GLPK program 
within a reasonable amount of computation time, that was set to a
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IRS. This leads to the versions ILS-BI and ILS-FI respectively. The size 
of the neighborhood sample examined at each pivoting operation, is 
set to neighborhoodSampleSize = 100. The size of the neighborhood 
itself is set to the maximum nbMsg of paths that can be suppressed 
and rebuilt at each move. The choice is random between 1 and K. We 
first report results for that default configuration, then we study the 
effect of diminishing the neighborhood size.

Comparative numerical results are reported in Table 2. The first 
row indicates the instance name and its characteristic parameters 
(T,N,P,K), respectively period of cyclic emission, router number, IP 
number, and message number. The other rows present the results 
for the three heuristics with their neighborhood size and two 
configurations of the ILP solver. For each method, are reported 
the computation time and the total length, averaged on a basis of 
100 runs per instance. The test cases are ordered by increasing size. 
The N1 instance is the smallest one, whereas the N4 the larger one. 

Config (it) Path built (%) CPU time (s) Feas. sol. (%)

Construction only

maxCount=1 without Dijkstra procedure 54 0.001 0

with Dijkstra procedure 81 0.001 0

maxCount=1000 without Dijkstra procedure 79 0.06 0

with Dijkstra procedure 96 0.03 9

maxCount=100000 without Dijkstra procedure 86 6 0

with Dijkstra procedure 100 6 100

Construction and improvement maxCount=50 
maxConstruct=1000
maxImprove=1000

without Dijkstra procedure 95 9.5 4

with Dijkstra procedure 100 0.7 100

Table 1: Impact of the main algorithmic components on N3A instance.

N1(6-7-4-12) N2(8-9-7-28) N3A(9-15-10-27) N3B(9-15-10-24) N4(47-36-35-209) average deviation

IRS timea

length
0.002 
53.3

0.11 
119.5

0.70 
131.7

0.82
119.6

8.89 
1565

2.1 
398

(±0.14)
(±3.5)

ILS-FI timea 

length
0.001 
53.5

0.15
117.8

0.69 
129.8

0.84 
118.6

7.25 
1570

1.79
398

(±0.1)
(±3.5)

ILS-BI timea 
length

0.001
53.7

0.17
119.0

0.66 
127.1

0.85 
118.0

7.57 
1568

1.85 
397

(±0.13) 
(±3)

IRS timea 
length

0.003
52.92

0.11 
121.12

0.58 
132.05

0.68
120.87

8.71 
1572.80

2.01 
400

(±0.16) 
(±3.48)

ILS-FI timea 
length

0.001
52.86

0.18 
118.24

0.74 
128.70

0.81 
117.37

6.97 
1568.66

1.74 
397

(±0.11)
(±2.74)

ILS-BI timea 
length

0.00 
54.66

0.18 
118.48

0.74 
127.72

0.87 
117.88

7.06 
1574.62

1.77 
399

(±0.10) 
(±2.91)

IRS timea 
length

0.002 
52.8

0.17 
118.9

0.61 
132.9

0.61 
120.3

6.50 
1577

1.58 
400

(±0.08) 
(±3.89)

ILS-FI timea 
length

0.001 
53.73

0.22 
119.88

1.44 
130.85

1.81 
118.84

7.35 
1566.04

2.16
 398

(±0.12) 
(±3.25)

ILS-BI timea 
length

0.001
54.57

0.20 
119.24

1.37
129.15

1.44
118.80

7.45
1567.36

2.09
398

(±0.13)
(±3.19)

first-sol timea 
length
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Table 2: Comparative results on the whole benchmark set.
a Time per run in Intel Core Duo (3.0 GHz) seconds (1 core used), C++ program.
b Time per run in Intel core i3-2350M (2.30 GHzx4) seconds, GLPK program.
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maximum of 48h for the largest instances. It is worth noting that the 
ILP model generates a huge number of variables and constraints to 
be tackled by the solver as the problem size grows. As an example, 
the N3B instance case roughly produces 31 million variables with 5 
hundred thousand constraints. According to the small instance cases 
N1 and N2 that were solved exactly, the heuristic method generates 
feasible solutions roughly at least 2000 times faster than the ILP solver. 
We think that these results highlight the contrast of behaviors when 
respectively dealing with an exact and heuristic method.

The two default parameter values of the neighborhood sample size 
and neighborhood size, respectively, were set empirically after a first 
round of experiments not reported in this paper. It appeared that 
increasing the sample size made the ILS-BI clearly worst performing, 
since it examines many more candidate neighborhood solutions at 
each pivoting operation. About the neighborhood size itself, i.e., the 
maximum number of paths suppressed/rebuilt at each move, we try 
now to better evaluate its impact. We diminish the neighborhood size, 
from actually all paths that can be suppressed (large neighborhood), to 
half of the paths suppressed (medium neighborhood), and to exactly 
2 paths suppressed (small neighborhood). We perform a complete 
execution of the three heuristics on the whole benchmark set, 
executing 100 runs per instance, for each of the three neighborhood 
sizes. Average results are shown in Figure 8 within 95% confidence 
interval. The two graphics in the figure let us evaluate the trade-off 
between solution quality (length value) and computation time. The 
graph on the left shows that length values are rather similar. Since 
all confidence intervals overlap, the differences in the lengths look 
not statistically significant. On the contrary, some disparities appear
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between computation times, as shown in the right graph in the figure. 
The first point to note is the similitude of behaviors between the ILS-
BI and ILSFI methods as the neighborhood size diminishes. This is 
not surprising since the methods are similar and examine a relatively 
small sample in the neighborhood. The second point to note is the 
contrast of behaviors between ILS and IRS methods. While the former 
approach performs significantly faster with a large neighborhood size, 
the situation is inverted with a small neighborhood size since the latter
becomes significantly faster than the former. This casts a light on 
the intensification/diversification tradeoffs into the methods. The 
ILS searches for improvements around a given pivot element which 
restricts the search region. But increasing the neighborhood size 
augments diversification. On the contrary, the IRS performs random 
steps in random directions starting from a given solution. This 
naturally increases diversification. But decreasing the neighborhood 
size restricts the search region. With regards to the trade-off between 
computation times and lengths, it seems that all configurations yield 
similar quality results, whereas fastest computation times occur for 
the IRS with small neighborhood, or ILS methods with medium or 
large neighborhood. Confidence intervals indicate that these last 
configurations are the best ones.

The numerical results in Table 2 allow us to compare ILS-FI 
and ILS-BI regardless of the neighborhood size and considering 
simultaneously the time and the length, ILS-FI performances are 
the best on N1, N2 and N4. However, those of ILS-BI are the best on 
N3A. ILS-FI behaves better on small and large instances while ILS-
BI performs better on instances that we could describe as medium. 
This confirms the best behavior of ILS-FI on many instances. In these

IlS-FI

random instances MT-real(%) MT-rand(%) MT max(%) time(s) length built(%) admis.(%)

N1-rand(6-7-4-12) 100 100 100 0.002 53 100 100

N2-rand(8-9-7-28) 100 100 100 0.17 117.5 100 100

N3A-rand(9-15-10-27) 90 87.86 90 0.49 126.9 100 100

N3B-rand(9-15-10-24) 90 85.54 89 0.50 117 100 100

N4-rand(47-36-35-209) 26.02 39.97 40 618.45 1405 93.86 0

average 81.20 82.67 83 123.92 363.9 98.77 -

deviation 0.0 (±0.1) 0.0 (±0.8) (±2.4) 0.0 -

Table 3: Results on random instances.

Figure 2: Impact of the neighborhood size on lengths and execution times.
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experiments, our main goal was to give an insight of the important 
contrast in computation time required when respectively dealing with 
exact and heuristic methods. We should mention that further work 
could adequately combine the benefit of both methods following 
the spirit of “matheuristic” approaches that aim at dealing with ILP 
acceleration according to the quick generation of feasible solutions 
by heuristic procedures. We expect that such adequate combinations 
could be studied in the future starting from the preliminary work 
presented in this paper.

Evaluation on random instances

We first detail the random instance generator, then we evaluate 
the local search approach on these randomly generated traffic 
configurations. The section also illustrates the designer’s problem of 
bandwidth decomposition and bridging the inaccessibility of many 
real-live problem instances.

The random instance generator

To evaluate the robustness of the method against a large range of 
traffic communication configurations, we have developed a generator 
of random instances. Based upon an application communication 
graph that specifies the inter-communications links opened between 
a set of IP components, the goal is to generate the quantity of packets 
that define the allocated bandwidth between each pair of source-
destination nodes. In other words, given a set of K source-destination 
nodes (i, j) of a CKPP instance, the goal is to generate random packet 
quantities xi j in a way consistent with the cyclic nature of the problem. 
Since source-destination messages are emitted based on a temporal 
cycle of length T, two types of constraints are to be satisfied. They 
concern emitters and receivers to avoid trivially infeasible instances 
respectively. They state that the allotted T time-slots must be shared 
by emitters as well as by receivers. More formally, we state the problem 
of bandwidth decomposition as follows.

Let ∏={1,2, . . .P} being the set of IPs, which may be either source 
or destination nodes. We define the application communication 
graph (ACG) as a matrix C = (ci j), 1 ≤ i, j ≤ P, such that ci j Є {0,1} 
whenever i ≠ j, and cii = 0 otherwise. An entry cij is such that ci j = 1 
if an open communication link exists from i to j, cij = 0 otherwise. 
Given an ACG, the model involves variables xi j indicating the number 
of packets associated to each source-destination link (i, j). Let s be a 
lower bound on the number of packets emitted by a given source. The 
generation of traffic instances, that we call Traffic Injection Problem 
(TIP), consists in generating many and diverse random instances for 
the CKPP.
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We are here concerned with the generation of many flow 
configurations of relatively good quality, rather than with necessarily 
generating a single maximum flow configuration. The quantity ∑i,j 
cijxij is the total flow that is injected in the network during the period 
T. In order to measure the saturation level of the emitters as in [27], 
we define the message throughput (MT) as the quantity (∑i,j cijxij/
PT)×100, that is, the percentage of the emitted packets related to 
the available time-slots at each source node. Figure 9 illustrates the 
problem of instance generation on a simple case. In (a) the ACG is 
shown, whereas in (b) and (c) two optimal configurations of the traffic 
flow are shown. We should note that, with a threshold of s = 0, optimal 
solutions may be unsatisfactory since some IPs may have no packets 
to communicate, as in (b). The goal is rather to share and decompose 
the flow between emitters/receivers to allow to communicate, as in 
(c). It is worth noting that the maximum flow value first depends on 
the ACG structure, regardless of the NoC topology. As an example, 
the MT cannot exceed 66,6% in the ACG in Figure 9. This example 
illustrates how the guaranteed traffic approach constrains the 
bandwidths to be carefully settled.

To generate many random traffic instances, we proceed in two main 
steps as shown with Figure 10. First, as illustrated in (a), we randomly 
partition the receiver bandwidth between its related emitters. The 
random choices are done according to uniform sampling. The values 
obtained at each receiver node define the maximum amount of traffic 
that a related emitter node can send to that receiver. Second, as in (b), 
we adjust proportionally these maximum bandwidths at the level of 
each emitter, while trying to maximize the number of packets sent. 
At each step, a difficulty arises because traffic values are integer values 
rather than fractional values. Hence, fractional values are floored to 
their nearest integer, and the lost packets are randomly re-injected 
one by one to the different bandwidths, taking care of the maximum 
available time-slots for each emitter/receiver. The random choices 
also take care of the threshold s, in such a way that at least s packets 
are sent by each emitter node. For the experiments, this threshold is 
set to s = 2 packets, since messages contain at least a header packet 
followed by a data packet. Following part of the results in 3, we note 
that the MT is slightly inversely proportional to the size of T.

 

Performances of local search against random instances

We evaluate the performance according to a wide range of random 
traffic configurations. Starting from the five real-life test cases and their 
respective communication graphs, we randomly generate new traffic 
values following the random process specified above. For each test case, 
we generate 100 new traffic instances with a threshold of two packets 
per message. Then we run the algorithm on these instances and evaluate 
the average value over these 100 runs. Results are presented in Table 3. 

Figure 9: An ACG (a), and two maximum traffic flow configurations (b-c).

Figure 10: Random partition of a receiver bandwidth (a), adjustment of 
an emitter bandwidth (b).
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Only the local search first-improvement is used. Two columns “MT-
real” and “MT-rand” respectively report the message throughput of 
the real-life instances and of their random instances counterpart in 
average. The column “MT max” gives the maximum MT over the 
100 generated instances. In addition to the execution time in seconds 
and length value, are reported the percentage of built paths and the 
percentage of admissible solutions found over the 100 runs. On the 
one hand, we can note that except the N4 test case, all the instances 
are solved successfully, and in a similar or shorter computation time 
than for the original reallife instances reported in Table 2. We can also 
note that, except for the N4 test case, the random MTs are all similar 
or inferior than those of the real-life instances. On the other hand, we 
can note that the N4 instance is never solved successfully, since only 
94% of the paths are built on average, and no admissible solution was 
found. This should be explained by the higher random MT (39.97%) 
which is 50% higher than for the real case instance (26%).

To evaluate to which extent the algorithm performs efficiently as 
a function of MT, we conduct new experiments. We progressively 
suppress packets from messages in order to gradually decrease the 
MT value. The results are shown on the two graphics of Figure 11. 
On the left part, are respectively shown the percentage of admissible 
paths and solutions found. On the right part, are indicated the related 
computation times. We can observe that 100% of the paths built are 
obtained below an intermediate MT level of roughly 30%. This means 
that the application can increase the volume of data exchanges from 
26% initially to 30%, while preserving the actual NoC topology. As in 
a bin packing problem, packets are packed in the transmission links 
until some overload occurs. Hence, this study casts a light on the 
problem of network dimensioning, as the designer adjusts the packet 
quantities, while trying at the same time to guarantee contention-free 
routing, especially for large scale NoC.

Conclusion

We have presented a combinatorial optimization problemwhich 
models conflict-free routing in a networkon-chip with guaranteed 
traffic. Based on TDMA techniques, the problem can be seen as an 
extension of a K-shortest paths problem combined with a bin packing 
problem, where time plays an important role. Messages are emitted 
in a cyclic way and the problem goal resides in the efficient allocation 
of the available time-slots for conflict-free routing, while minimizing 
path lengths. The solution methods are based on a time-expanded
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graph structure able to memorize time-slot occupation. An ILP 
model is stated for the problem, but only very small size instances 
were solved exactly and successfully in a reasonable amount of time. 
Three heuristic search methods were presented for attempting to 
generate feasible solutions fast. They were applied on a set of real-life 
benchmarks and on many randomly generated traffic configurations. 
All the heuristics methods were able to find feasible solutions on 
the real-life benchmarks in few seconds. Experiments show that the 
addition of a one-to-one path Dijkstra procedure into the local search 
clearly leads to a great improvement on both length minimization 
and computation time. Also, the generated random instances helped 
us determine the limits of the approach as the message throughput 
increases. The main limit of this GT traffic modeling is the lack of 
bandwidths flexibility between IPs that are fixed once and for all. It 
is resulting in an over-dimensioning of network to satisfy the worst 
case conditions. Making flexible bandwidth between the IPs is a track 
of future graph structure able to memorize time-slot occupation. An 
ILP model is stated for the problem, but only very small size instances 
were solved exactly and successfully in a reasonable amount of time. 
Three heuristic search methods were presented for attempting to 
generate feasible solutions fast. They were applied on a set of real-life 
benchmarks and on many randomly generated traffic configurations. 
All the heuristics methods were able to find feasible solutions on 
the real-life benchmarks in few seconds. Experiments show that the 
addition of a one-to-one path Dijkstra procedureinto the local search 
clearly leads to a great improvement on both length minimization 
and computation time. Also, the generated random instances helped 
us determine the limits of the approach as the message throughput 
increases. The main limit of this GT traffic modeling is the lack of 
bandwidths flexibility between IPs that are fixed once and for all. It is 
resulting in an over-dimensioning of network to satisfy the worst case 
conditions. Making flexible bandwidth between the IPs is a track of 
future research. The idea would be a dynamic reconfiguration of the 
routing at execution time. Several TDMA tables would be introduced 
in emitters. And at the beginning of each cycle, each emitter could 
change the transmission table. This change should modify bandwidth 
and communication paths. The challenge would be, at the time of 
execution, the potential reallocation of vacant time-slots during 
dynamic and mutually exclusive changes of TDMA from a same 
emitter, without disturbing or stopping the system.
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Figure 11: Performances according to different levels of the traffic injection rate in the N4 NoC.
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