
Optimizing the Cyclic K-conflict-free Shortest Path Problem in a
Network-on-chip

Publication History:

Received: January 31, 2017
Accepted: June 28, 2017
Published: June 30, 2017

Keywords:

Routing, NoC, K-shortest-path,
Optimization, Exact method,
Heuristics, Guaranteed
traffic, Best effort

Research Article Open Access

Introduction

Network-on-chip (NoC) is an emerging approach in multi-
processor system-on-chip (MPSoC) technology in which the design
of efficient communication routing schemes is an important challenge
[1-3]. In such systems, traditional solutions with shared-buses
are replaced by interconnections with short links. As in computer
networks or terrestrial transportation networks, a critical issue is to
allow guarantee of traffic bandwidth, avoid collisions, deadlocks and
livelocks. In such networks, Guaranteed Traffic (GT) approaches are
often opposed to Best Effort (BE) methods [4]. A key feature of GT
is to address conflict-free routing at the time of route computation,
whereas BE deals with these problems only at the execution time
of the routes. It is admitted that BE networks achieve good average
performances, but that worst case performances are very hard to
predict [5]. Furthermore, avoiding deadlocks in BE networks implies
restrictions on routing and/or extra-costs due to virtual channel
splitting. On the contrary, GT methods ensure the application
real-time requirements and avoid the possibility of contention and
deadlocks while using irregular topologies that allow significant
power savings.

In this paper, we present a combinatorial optimization problem
that allows guaranteed traffic with conflict-free routing. The
communication is wormhole. Wormhole routing operates by
advancing the head of a message directly from incoming to outgoing
links. Packets are stored in the links while advancing through the
networks in a pipeline fashion. The header packet contains the
specification of the path to follow, and packets must remain contiguous
in the network links. No memory buffer is needed in the routers
to store packets. Transmissions are synchronous with a common
clock that defines the time unit, called a time-slot. To efficiently
schedule messages through shared links, we adopt the technique of
time division multiplexing. Messages are emitted periodically with
a period of length T. The value of time T is determined according
to the communications bandwidth constraints during the design
phase. The size of T, for all interconnected Intellectual Property

*Corresponding Author: Prof. Marc Sevaux, Universit´e de Bretagne-Sud –Lab-
STICC, CNRS UMR 6285, Lorient, France; E-mail: marc.sevaux@univ-ubs.fr

Citation: Zerbo B, Sevaux M, Rossi A, Cr'eput JC (2017) Optimizing the Cyclic
K-conflict-free Shortest Path Problem in a Network-on-chip. Int J Comput Softw
Eng 2: 115. doi: https://doi.org/10.15344/2456-4451/2017/115

Copyright: © 2017 Zerbo. This is an open-access article distributed under the
terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author
and source are credited.

(IP) components, is standardized according to the minimum of the
maximum number of packets received by the IPs [6,7]. The number
of packets by message defines a given bandwidth between a source
and a destination node. At each source node, a TDMA (time division
multiple access) table specifies the departure times of each message
within the possible time-slots 0, . . . ,T−1. This technique of time-
multiplexing was previously presented and used in [6,8-11. But the
emphasis was mainly put on architecture considerations, and the
combinatorial optimization problem succinctly addressed with some
ad hoc heuristics. No reproducible benchmarks were proposed to
allow comparative evaluations between the methods. In this paper,
and for the first time, we state the optimization problem formally, and
relate it to other standard routing problems. We focus on its solution
using standard local search techniques, and provide a set of reusable
benchmarks to compare this work’s results to future works on this
problem. It can be used to calculate the best communication paths for
implantation in the NoC during the design.

Other works deal with different resolution techniques. The
interested reader is referred to Ge and Wu [12]; Lin et al. [13]. A recent
survey of these routing methods in NoC is presented in Benmessaoud
and Koudil [14].

Given a graph that represents a network topology, and a set of K
source-destination messages of variable sizes that are periodically
emitted based on a temporal cycle of length T, the goal is to compute
K source-destination paths and to set their message emission dates,

International Journal of
Computer & Software Engineering

Boureima Zerbo1, Marc Sevaux2�*, Andr'e Rossi3 and Jean-Charles Cr'eput4

1Universit´e de Ouagadougou, Burkina-Faso
2Universit´e de Bretagne-Sud –Lab-STICC, CNRS UMR 6285, Lorient, France
3Universit´e d’Angers, LERIA, Angers, France
4Universit´e de Technologie de Belfort-Montb´eliard, France

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 2. 2017. 115

 Zerbo et al., Int J Comput Softw Eng 2017, 2: 115
 https://doi.org/10.15344/2456-4451/2017/115

Abstract

We study a combinatorial optimization problem for conflict-free routing in a Network-on-Chip. Based
on time division multiplexing and cyclic emission, the problem consists in finding a set of K shortest
paths, such that packets will never conflict through the network but can use shared communication links
in an efficient way. The model allows to avoid collisions and deadlocks in irregular network topologies,
while minimizing latency. A time-expanded graph approach is retained for the solution process. First,
we present a mixed integer linear programming model for the problem. Second, a set of shortest paths
operators are combined within three iterated local search schemes able to quickly generate admissible
solutions for the problem. To evaluate the method, experiments are conducted on a set of five real-life
problem instances, and on many artificial unstructured random instances derived from them. We detail
the problem of traffic instance generation, that also illustrates the designer’s task of flow decomposition
between communicating components. Intensive simulations illustrate the accuracy of the solution
method.

https://doi.org/10.15344/2456-4451/2017/115
https://doi.org/10.15344/2456-4451/2017/112
https://doi.org/10.15344/2456-4451/2017/115

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 2. 2017. 115

such that packets will never clash through the network. The objective
is to minimize the paths total length in order to minimize total power
consumption and network use rate. The length of a path is expressed
in time-slots.

One way to address such a problem of multi-path findings where
time plays an important role is by using a time-expanded graph. A
time-expanded graph (TEG) contains one copy of the node and arc
sets of the original static graph for each discrete time step considered.
As well as for time-division multiplexing [9], this structure is often
useful in terrestrial transportation problems, particularly in routing
with time-windows. As reviewed by K¨ohler et al. [15], the TEG
concept allows solving a variety of flow-over-time problems by
applying algorithmic techniques developed for static network flows.
As an example, we use a modified Dijkstra algorithm able to compute
a single shortest path in the TEG in pseudo-polynomial time. We
will see how such a procedure drastically improves performance of
the heuristic approach for the whole problem. Based on the TEG
structure, we first present an integer linear program (ILP) for the
problem in order to address it in an exact way with a standard solver.
We also propose three heuristics to address the problem based on a
standard iterated construction-improvement scheme. They are an
iterated random search, and an iterated local search declined within
two versions, greedy descent and steepest descent respectively.
The basic operators are a greedy parallel construction method, a
neighborhood operator, a modified Dijkstra algorithm, and man-
agement date operators. Even though deciding feasibility is NP-hard,
our heuristic approaches attempt to generate feasible solutions as
fast as possible. In experiments, we illustrate how the progressive
introduction of operators drastically improves performances.
Intensive experiments are performed on a set of real-life instances and
on artificial random traffic configurations. We present the problem of
traffic instance generation as a maximum flow problem. It illustrates
the designer’s problem of bandwidth decomposition and casts a
light on the prerequisites of a guaranteed traffic approach. Intensive
simulations illustrate the robustness of the approach when addressing
a wide range of possible traffic configurations.

In Section 2, we state the routing problem, called Cyclic K-conflict-
free shortest Paths Problem (CKPP). We relate the problem to the
literature of shortest paths routing. In the same section, we justify
the use of a time-expanded graph structure to solve the problem
and present an ILP model of CKPP. In Section 3, we present the
local search methods retained for the solution process. Based on an
iterated local search scheme, we detail three versions of conducting
the improvement search. Section 4 is devoted to empirical evaluations
of the algorithms on benchmarks representative of the application
domain, and also on unstructured random instances. Then, the last
section is devoted to the conclusion and further research.

Definition of the Routing Problem

We first state the routing problem and relate it to similar
combinatorial optimization problems in the literature. We justify the
use of a time-expanded graph approach for the solution method, and
also present a mixed integer linear program for the problem.

Problem statement

A NoC-based architecture consists of a set of interconnected
Intellectual Property (IP) components. Such IPs are typically general
purpose or specific processors, dedicated hardware accelerators,

Citation: Zerbo B, Sevaux M, Rossi A, Cr'eput JC (2017) Optimizing the Cyclic K-conflict-free Shortest Path Problem in a Network-on-chip. Int J Comput Softw
Eng 2: 115. doi: https://doi.org/10.15344/2456-4451/2017/115

 Page 2 of 12

and peripheral controllers or memories in a single chip. They
are emitters and/or receivers of messages. The components are
connected by routers according to a given network topology. Each
IP is associated with a unique a router through its network interface
(NI). More formally, a NoC can be modeled by a directed graph G =
(V,A), where the set V of vertices represents the routers and IPs, and
the set of arcs A V ×V represents the directed transmission links
between them. Here, we consider wormhole routing. Each message
μ is made of a sequence of l(μ) contiguous packets, with |l(μ)| = lμ
> 0, that are transmitted along the arcs of the network. The header
packet contains a specification of the message origin/destination
path, while other packets are application-dependent data. A router
has no memorization capacity, it only retransmits packets as specified
by the header packet. The NoC is synchronous, it is cadenced by a
common clock shared by all its components. Each arc has a capacity
of 1 packet by unit of time, called a time-slot or time-step. The packets
are transmitted in a contiguous way. Hence, if a physical occurrence
of a message emitted at time t(μ) follows the path i, i+1, . . . , i+n, with
i Є V, its packets will cross the arc (i, i+1) at the consecutive time-
steps t(μ)+i+q,q = 0, . . . , lμ −1. We say that an arc may be “occupied”
by a packet at a given time-slot, otherwise it is said “free” at a given
time-slot.

To guarantee transfer rate, a source repeatedly emits messages based
on a period or cycle T. A given bandwidth is specified by a message
size, i.e., the number of packets emitted by period T. Hence, a message
can be seen as a class of its physical occurrences at each cycle. This
allows to consider classes of time-slots for arc occupations. If an arc is
occupied at time-slot t, it will also be occupied at timeslots t +λT, for
all nonnegative integer λ. We say that an arc is occupied at t modulo
T to express its recurrent occupation by a packet. We will often talk
of a packet, or message, to refer to the class it represents. When
transmitted through the network, two packets are said conflict-free if
they never clash, i.e., cross an arc at the same time-slot. By extension,
paths or messages are said “conflict-free” or “contention-free” when

their related packets never conflict (two at a time). Since paths may
share common communication links, and since we want to achieve
guaranteed traffic, paths and emission dates have to be stated such
that two packets will never clash. We assume that paths may contain
circuits, only when those circuits do not contain the destination or the
origin of the path. Indeed, if the origin appears in a circuit, then the
message can be send later without that circuit, and if the destination
appears in a circuit, then all the corresponding traffic is useless and can
be removed. However, a circuit that does not involve the destination
nor the origin may be useful to wait for a region of the network to
be less heavily loaded. Figure 1 illustrates two conflict-free source/
destination paths in an already occupied NoC, with an emission cycle
of length T = 5. Two packets are emitted from source 1, and two
packets from source 2. A table of the available time-slots (modulo T)
that packets can use as they advance through the network is shown

Figure 1: Two message transfers in an occupied NoC.

https://doi.org/10.15344/2456-4451/2017/115

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 2. 2017. 115

next to each arc, and filled squares are unavailable time-slots. We can
see that packets cross the shared arcs at distinct time-slots modulo
T and never conflict. We can now precisely state the combinatorial
optimization problem called “Cyclic K-conflict-free shortest Paths
Problem” that we address in this paper.

Cyclic K-conflict-free shortest Paths Problem (CKPP)

A problem instance consists in a directed graph G = (V,A), an
emission cycle of length T, and a set of K messages defined by

where (sk,dk) is an origin/destination pair, and lk the number of
packets of the message. The goal is to find the departure times of
the messages t(μk) Є [0,T −1], μk Є M, at each source node and the
origin/destination paths of minimum total length for conveying the
messages, such that the paths are conflict-free.

We should note that the objective of the problem is the total
length of the paths, whereas the constraints reside in the temporal
occupation of the arcs such that paths are conflict-free. It is worth
noting that the problem is NP-hard in the strong sense for general
graphs as well as for planar graphs or grid networks. This can be
seen by relating the problem to the K-Edge-Disjoint Shortest Paths
problem (EDP) [16]. This well known problem has different versions
depending whether we ask for vertex or edge disjoint paths between a
set of K source-sink pairs. This is one of Karp’s [17] original NP-hard
problems. By restricting CKPP to only those instances for which T =
1, we retrieve the EDP. This problem is known to be NP-hard in the
case of planar graphs [18], even when stated in the grid and when path
lengths are constrained by a constant [19]. Then, since CKPP remains
NP-hard when the number T is bounded by a constant, it follows that
it is NP- hard in the strong sense. Similarly, the CKPP can be seen as
an extension of a Bin Packing problem, where arcs stand for bins of
capacity T, and the K messages for items of size qk.

A similar problem is the unsplittable flow problem (UFP). It is a
generalization of EDP where every edge e has a positive capacity ce;
and every pair has a demand fk > 0. The demand from sk to dk has to
be routed in an unsplittable manner, i.e., along a single path from sk
to dk. For every edge e the total demand routed through that edge
should be at most ce. The problem adds a capacity constraint to the
EDP. It is different from CKPP since it allows variable arc capacities,
discarding temporal aspects on arc occupation. Generally, classical
flow models only deal with static situation. A well-known problem
that introduces time dependent transit constraints is the one-to-one
shortest path problem with time windows (SPPTW) [20]. The aim
is to compute a shortest path respecting the given time-windows
on arcs occupation. This kind of problems often arises in terrestrial
transportation, road traffic control, and vehicle routing applications.
An example is Automated Guided Vehicles (AGVs) [21] technology
for optimizing large scale production and logistic systems. The
SPPTW is NP-hard but several pseudo-polynomial time algorithms
are available to solve it exactly [20,22,23]. A sub-problem of our CKPP
is to compute a one-to-one source-destination path in an already
occupied NoC. The available (“free”) time-slots on each arc stand for
time-windows. Hence, a modified Dijkstra algorithm can be designed
to compute such a single path in an efficient way. It will be used as an
operator into the heuristic methods presented in this paper to address
the whole CKPP.

Citation: Zerbo B, Sevaux M, Rossi A, Cr'eput JC (2017) Optimizing the Cyclic K-conflict-free Shortest Path Problem in a Network-on-chip. Int J Comput Softw
Eng 2: 115. doi: https://doi.org/10.15344/2456-4451/2017/115

 Page 3 of 12

Time-expanded graph approach

We address the problem by using a spatiotemporal graph as a
memory of temporal arc occupation. This memory specifies for each
arc of the network, and each time-slot in interval [0,T −1], whether or
not the arc is occupied by a given packet at the given time slot. We say
that an arc is “free” or “occupied” at time t modulo T. Hence, an array
of booleans of size T is associated to each arc. Such a spatiotemporal
graph is generally called a time-expanded graph (TEG)[15]. In its
standard definition, a TEG contains one copy of the node set for each
discrete time step. This is a time layer. For each arc in the original
graph, there is an arc copy between each pair of time layers in the
TEG. When time occupation is cyclic, as in our case, each layer t is
connected to its next (t +1) modulo T layer. The notion was presented
by Ford and Fulkerson [24] in order to model flow over time. The
memory size needed is O(N2 ×T) for general graphs or O(N × T) for
planar graphs, with N the number of nodes. As reviewed by K¨ohler
et al. [15], the TEG concept allows to solve a variety of flow-over-
time problems by applying algorithmic techniques developed for
static network flows. It is worth noting that the size of the time-
expanded network is only pseudo-polynomial in the input size, since
the number T is encoded with log(T) bits. Hence, we should address
only instances of moderate size T. Fortunately, since T is always small
(maximum of 47 time-slots in our applications), the TEG approach is
a natural way to deal with shortest path findings that would guarantee
traffic in a NoC.

Mixed integer linear programming model

We first propose an ILP of the CKPP. The model is packet oriented.
A NoC is composed of a set I of IPs (|I| = P) and a set R of routers (|R|
= N). A set P of packets (|P | = Q) with a specific origin and destination
(taken from I) has to travel across the NoC without conflicts and in
the shortest possible time. The set of IPs and routers form the nodes of
the graph V ={0, . . . ,P−1,P, . . . ,P+N−1}. The set of arcs is denoted by
A V ×V. There are |Q| packets indexed by q, q Є {1, . . . ,Q} such that
where lk is the size of message as stated in the CKPP definition. Each
packet q starts and ends in an IP, i.e. has an origin sq in I , sq Є {0, . . .
, P−1} and a destination dq in I , dq Є {0, . . . , P−1} with sq ≠ dq. Time
is discretized, t Є {0, . . . ,T −1} is a time slot, and T is the TDMA size.
The system is pipeline-based, thus, time slots t and t +T are identical
for all t. Let xi, j,q,t be a boolean variable set to 1 if packet q uses arc (i,
j) during time slot t, 0 otherwise. With the previous definition, we can
state the constraints and the objective function as a 0-1 integer linear
program in Equations (1-11) below.

1. Arc capacity: Each arc is used for conveying at most one packet per
unit of time.

2. Packet origin: For all q Є {1, . . . ,Q}, packet q originates from IP sq
Є {0, . . . ,P−1}.

3. Packet destination: For all q Є {1, . . . ,Q}, packet q has to reach IP
dq Є {0, . . . , P−1}.

{ (, ,) : , , , 1,..., }k k k k k k kM s d l s V d V l V k Kµ= = ∈ ∈ > =

∪

, , ,
{1,..., }

(,) , {0,..., 1}i j q t
q q

x i j A t T
∈
∑ ≤ ∀ ∈ ∀ ∈ −

,

, , ,
{0,..., 1} { ,..., 1}

 ()

1 {1,..., }
q

q j

s j q t q
t T j P P N

s A

x Q
∈ − ∈ + −

∈

∑ ∑ = ∀ ∈
|

(1)

(2)

(3), , ,
{0,..., 1} { ,..., }

,

 1 {1,..., }
q

q

i d q t
t T i P P N

d A

x q Q
∈ − ∈ + −

∈

∑ ∑ = ∀ ∈
|(i)

https://doi.org/10.15344/2456-4451/2017/115

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 2. 2017. 115

4. Packets conservation: For all instant time t Є {0, . . . ,T −1}, for all q
Є {1, . . . ,Q} and for all i Є {P, . . . ,P+N −1}, if packet q reaches router
i at time t, then it has to leave that router at time t +1.

5. Origin IPs are not reentrant: For all instant time t Є {0, . . . ,T −1},
for all q Є {1, . . . ,Q}, packet q cannot enter IP sq Є {0, . . . ,P−1}.

6. Destination IPs are not reentrant: For all slot time t Є {0, . . . ,T
−1}, for all q Є {1, . . . ,Q}, packet q cannot leave IP dq Є {0, . . . ,P−1}.

7. Origin IPs generate at most one packet at a time: For all time slot
t Є {0, . . . ,T −1}, for all IP i Є {0, . . . ,P−1}, the sum of the packets q
sent out of i and such that sq = i must be less than one.

8. Destination IPs consume at most one packet at a time: For all time
slot t Є {0, . . . ,T −1}, for all IP j Є {0, . . . ,P−1}, the sum of the packets
q sent to IP j and such that dq = j must be less than one.

9. Message constraints: A message is modeled as a sequence of
packets that must have the same route in the NoC. More formally,
message k Є {1, . . . ,K} is an ordered set of packets {ωk,1, . . . ,ωk,l(k)}
where l(k) is the length of message k (i.e., the number of packets in
the message). ωk,1 Є {1, . . . ,Q} is the first packet and ωk,l(k) is the last
packet of message k. In any consistent instance, all the packets of a
message must have the same origin and destination router, i.e., they
must satisfy: sq = sq' and dq = dq'
 .

The message constraints are enforced as follows:

These constraints say that if packet wk,q occupies arc (i, j) at time
t, then packet ωk,q+1 must occupy this arc at time (t+1) mod T. The
equality also enforces that if packet ωk,q does not occupy arc (i, j) at
time t, then packet ωk,q+1 cannot occupy this arc at time (t +1) mod T.
Thus, all the packets of a message move along the same route within
a time shift.

10. Packet destination: The destination dq of packet q is a terminal
node of the path of the packet q. For all time slot t Є {0, . . . ,T −1}, for
all q Є {1, . . . ,Q}, the packet q cannot go to another destination other
than its destination dq.

Citation: Zerbo B, Sevaux M, Rossi A, Cr'eput JC (2017) Optimizing the Cyclic K-conflict-free Shortest Path Problem in a Network-on-chip. Int J Comput Softw
Eng 2: 115. doi: https://doi.org/10.15344/2456-4451/2017/115

 Page 4 of 12

11. Objective: Minimize the total length of all paths for all packets

When compared with the CKPP problem definition which is a
slightly more general formulation, Constraints 7 and 8 are specifically
added to take into account the hardware conditions of emission
and reception. These conditions state that each IP node implements
a TDMA (Time Division Multiple Access) table that can only send
one single packet at each time slot occurrence. A router node, at
the difference of an IP node, allows packets to cross at a given time
slot following the different directions stated by the communication
graph. An IP node will always be connected to a single router and its
emission capability restricted by the TDMA mechanism such that no
more than one packet will be
emitted or received at each time slot.

Iterated Local Search Approaches

Iterated local search main loop

We choose one of the simplest ways to address the problem by means
of heuristic methods, that is, by a simple iterated local search scheme
that exploits randomized choices [25]. The main loop simply iterates
a search many times by restarting the algorithm from a new random
starting point. We identify two levels of operations. The first level puts
the emphasis on the fast construction of partial solutions. It manages
the message emission dates and then, applies a set of construction
operators. Starting from such a solution, the second level applies
local modifications on the path set in order to “improve” or “repair”
the solution. Improvement is based on a neighborhood operator
that explores a smaller region around the current solution. The
construction search is followed by an improvement search as often in
heuristic methods. Hence, the iterated approach respectively, alternates
large and small moves in the search space. Large construction moves
are for diversity generation, whereas small improvement moves for
intensification of the search in a particular region. The pseudo-code
of the main loop is presented in Algorithm 1. The two internal calls
“constructSolution” and “improveSolution” respectively correspond
to the construction trial followed by the improvement trial. These two
procedures are detailed in the next sections. In each case, possibly non
admissible solutions can be generated. That is why solutions must be
ranked according to the hierarchical two objectives of respectively the
number of built paths and the paths length. Maximizing the number
of built paths is the first objective, whereas minimizing the paths
length is the second objective. The “selectBest” procedure performs
such a ranking.

Algorithm 1: Iterated local search method
Output: BestSolution
begin

S←initialize(); // Initialize data structures and emission dates
count ←0;
while count < maxCount do
	 count ←count +1;
	 S←constructSolution(S);
	 S←improveSolution(S);
	 BestSolution←selectBest(S,BestSolution);
	 return BestSolution;

, , ,
(,..., 1) ,

{0,..., 1},
0 {1,..., }

q
q

i s q t
i P P N i s

t T
x q Q

∈ + −

∀ ∈ −
∑ = ∀ ∈

|()

(,..., 1) ,

{0,..., 1},
 {1,..., }

qj P P N d j A

t T
q Q

∈ + − ∈

∀ ∈ −
∑ ∀ ∈

|()
(,..., 1) ,

{0,..., 1},
 {1,..., }

qj P P N d j A

t T
q Q

∈ + − ∈

∀ ∈ −
∑ ∀ ∈

|()

, , ,
(,..., 1) ,

{0,..., 1},
0 {1,..., }

q
q

i s q t
i P P N i s

t T
x q Q

∈ + −

∀ ∈ −
∑ = ∀ ∈

|()

, , , , , ,(1)
(.) (,)

{0,..., 1},
mod {1,..., }

{ ,..., 1}
j i q t j i q t

j V j i A i V i j A

t T
x x T q Q

i P P N
+

∈ ∈ ∈ ∈

∀ ∈ −
∑ ∑ ∀ ∈

∀ ∈ + −
| |

(4)

(5)

(6)

(7)
, , ,

{1,..., } { , 1}
 ,

{0,..., 1},
1

{0,..., 1}
q

i j q t
q Q j P P N

s i i j A

t T
x

t p∈ ∈ + −
= ∈

∀ ∈ −
≤

∀ ∈ −∑ ∑
| |()

, , ,
{1,..., } { , 1}

 ,

{0,..., 1},
1

{ ,..., 1}
p

i j q t
q Q i P P N

d i i j A

t T
x

i P p N∈ ∈ + −
= ∈

∀ ∈ −
≤

∀ ∈ + −∑ ∑
| |()

(8)

, ' ,1 , (){1,..., }, { ,..., }q q k k l kk K ω ω∀ ∈ ∀ ∈
, ' ,1 , (){1,..., }, { ,..., }q q k k l kk K ω ω∀ ∈ ∀ ∈

, , , 1, , , , ,

{1,..., },
(1) mod {1,... () 1},

{0,..., 1},
(,)

k q k qi j t i j

k K
x x t T q l k

t T
i j A

ω ω +

∀ ∈
= + ∀ ∈ −

∀ ∈ −
∀ ∈

(9), , ,
{0,... 1} { }

 (,)

{0, ..., 1},

 {1, ... }

{ , ..., 1},

,
q

i j q t
j P d

i j A

t T

q Q

i P N P

x
∈ − −

∈

∀ ∈ −

∀ ∈

∀ ∈ + −
∑

, , ,
(,)

i j q t
i j A q Q t T

Min x
∈ ∈ ∈
∑ ∑∑

https://doi.org/10.15344/2456-4451/2017/115

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 2. 2017. 115

Construction loop

Here, we present the structure of the construction procedure
referred to as constructSolution in the main loop of Algorithm
1. The procedure is detailed in Algorithm 2. Its role is to quickly
generate new candidate solutions, admissible or not, that present the
maximum number of paths built. To do so, the procedure iterates
a basic construction process maxConstruct times. The first type of
operations is the management of the message departure dates. Once
the emission dates are set, a greedy parallel construction operator
tries to quickly and simultaneously generate the K conflict-free paths.
Then, a modified Dijkstra algorithm, which is more time consuming,
only tries to rebuild the residual “blocked” paths one by one. The
selectBest procedure performs a ranking as explained in the previous
section. The main operators are detailed below.

Emission date management. As mentioned in the problem
definition, the construction of admissible source/target paths mainly
depends on the message emission dates that are specified in each

Algorithm 2: constructSolution
Output: S Є Solution, maxConstruct
begin

count ←0;
while count < maxConstruct do
	 count ←count +1;
	 S← permuteDepartureDates(S);
	 S←translateDepartureDates(S);
	 Initialize the TEG; // all arcs are set "free" at each time-slot
	 Remove the all paths from S;
	 S←constructSolutionPar(S); // Greedy parallel construction
	 S←constructSolutionWithModifiedDijkstra(S);//Construct

 the remaining paths one-by-one in TEG
	 BestSolution←selectBest(S,BestSolution);
	 return BestSolution;

TDMA table of each source node in the interval [0,T −1].
Assuming that the emission dates are first set at initialization, it
is necessary to make evolve such dates while constructions are
reiterated. Two operators are proposed in order to manage emission
dates. They are respectively named permuteDepartureDates and
translateDepartureDates in Algorithm 2. The first operator is applied
with probability 0.5. In each operator, a given TDMA table (i.e., a
source node) is first chosen randomly. The first operator applies
a random permutation between two emission dates of that TDMA
table. The second operator applies a one time unit forward translation
to the TDMA emission dates.

Greedy parallel construction. This procedure, called constructSol-
utionPar in Algorithm 2, greedily builds the origin/destination paths
step by step and in a parallel way. Before this procedure can proceed, a
set of routing tables must first be computed at the whole initialization.
They embed the costs of the shortest paths from each location to
all destination nodes in the original NoC graph. These tables are
computed only once at the initialization of the main algorithm. The
origin/destination paths are built step by step, i.e., time slot by time
slot, and jointly. An image of the behavior of the algorithm is that
of several waves that propagate in all directions at constant speed,
from the source node until it reaches the destination node or not.
Each iteration step corresponds to a given time-slot, and to the
introduction of the next vertex into each path. The next router is
chosen according to the minimization of its distance to the destination

Citation: Zerbo B, Sevaux M, Rossi A, Cr'eput JC (2017) Optimizing the Cyclic K-conflict-free Shortest Path Problem in a Network-on-chip. Int J Comput Softw
Eng 2: 115. doi: https://doi.org/10.15344/2456-4451/2017/115

 Page 5 of 12

node, and by verifying in the TEG that the corresponding arc is free
for the message packets. When several choices are available, the next
vertex is chosen randomly. Then, the arc status structure is updated in
the TEG. The process continues until all messages have reached their
destination node, or no vertex insertion is possible. Then, a path is
said “constructed” or “blocked”. The temporal complexity is O(N ×T2)
for planar graphs, or graphs with constant degree, and O(N2×T2) for
general graphs, with N the number of nodes and T the emission cycle.
This is a rough estimation. A node can be visited as soon as there is
an available time-slot in some incident arc, then it can be visited at
most O(N ×T) for general graphs and messages of size 1. The number
of time-slot examinations at each node depends on the degree of the
node and message size, then it is at most O(N ×T) for general graphs
and a message of size T.

 Dijkstra algorithm in TEG. We have designed a breath-first-search
algorithm able to construct a one-to-one shortest path in an occupied
time-expanded graph. Here, the TEG may contain “free” or “occupied”
arcs as part of the input. The procedure is called constructSolution
WithModifiedDijkstra in Algorithm 2. The term Dijkstra is used in
reference to the function of the algorithm, that produces a shorter
path, and to the fact that it is a simplification of the classical Dijkstra
algorithm with unit costs associated to the arcs. The algorithm is
extended to take into account the cyclic nature of the problem and
multi-packet traveling. Each iteration of the algorithm corresponds to
a single time-slot increment, so that the path length increases of one
time-unit. Thus, all the successors of a visited node are necessarily
in minimum distance from the origin and will constitute the nodes
to visit in the next iteration. A main simplification over the classical
Dijkstra, is that we do not have to manage an unordered list of
successors and select lower cost one. All successors are at lower cost
necessarily and must be examined. As well as in Dijkstra’s algorithm,
multiple predecessor node choices are possible. In this case, only one
of the possible predecessors is selected randomly. Then, only one
single path is computed based on these random choices since the
embedding metaheuristic only necessitates one random single path at
each call of the Dijkstra algorithm. Randomness must allow diversity
of the paths found due to multiple calls. The temporal complexity is
O(N ×T2) for planar graphs, and O(N2×T2) for general graphs. A node
of the communication graph cannot be visited more than T times,
otherwise the visit will constitute a loop in the TEG where nodes are
duplicated T times. The number of time-slot examinations at each
node depends on the graph degree and message size, then, it is at most
O(N×T) for general graphs and a message of size T.

Another important difference with a standard Dijkstra algorithm
arises from the cyclic and multipacket nature of the shorter path
problem. Here, arcs occupation must be dynamically updated into
the TEG as the path is currently built. This is necessary in order to
avoid self-conflicts for a given multi-packet message, since a header
packet could hit queue packets at the same emission cycle or at
different emission cycles. The situation can occur if the length of a
path is larger than the period T, but it can also occur with a message
with length sufficiently large such that the header packet could hit
its queue packets according to a loop in the path, regarding the NoC
communication graph. This dynamic change of TEG occupation
status has a direct impact on the conditions of optimality. In the case
of a single packet message, the algorithm guarantees optimality in
time polynomial with the TEG size, that is, in pseudo-polynomial
time over the CKPP instance size. This naturally follows from the
breath-first- search algorithm behavior. However, in the case of a
multi-packet message and due to dynamic updates of arc occupation,

https://doi.org/10.15344/2456-4451/2017/115

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 2. 2017. 115

optimality is no longer guaranteed. It arises that further arc/vertex
choices should depend on the previous choices made. This is an
indication of a more complex and specific problem. We actually do
not prove some NPhardness for that specific subproblem, nor prove
that a polynomial solution exist. At the moment of writing, we let the
complexity analysis of that specific subproblem open. However, the
less the number of packets, the more the probability to get an optimal
one-to-one path. The shorter will be the path, the less will be the
probability of conflict. Some possible solution that could be envisaged
to guaranty optimality could be to delegate the single shorter path
computation to the ILP method, once adapted to a given occupied
TEG as an input. This could be envisaged in further work that would
combine exact and heuristic methods.

Local search improvement algorithms

We now detail the improvement procedure, called improveSolution
in Algorithm 1. While the construction procedure generates diversified
solutions starting from random initializations, the improvement
procedure allows to perform more or less smaller steps in a smallest
region of the solution space in order to transform non admissible
solutions to admissible ones. The general scheme of an improvement
procedure consists of embedding a neighborhood operator within
some search strategies. We first detail the neighborhood operator,
then we propose three versions for the search strategy.

The pseudo-code of the neighborhood operator, called generate-
Neighbor, is given in Algorithm 3. Because of the many paths
constructions that need to be performed, we choose to operate at the
level of paths deconstruction and reconstruction. The neighborhood
operator simply suppresses a subset of the solution paths, with
the removeMessages procedure, and hence tries to construct the
solution again from that partial solution. To do so, it uses the greedy
parallel construction procedure followed by the one-to-one Dijkstra
algorithm, that were specified for the construction phase (cf. previous
section). The number of removed paths stands for the neighborhood
size, that can be more or less large. It is intended that the new paths,
together with the previously “blocked” paths, would have a new
chance to being completely reconstructed by the operator. Since
many random choices are possible during path construction, the
neighborhood can be seen as large, and the method interpreted as a
“reparation” procedure, following the ruin and recreate principle as
formulated by Schrimpf et al. [26].

Algorithm 3: generateNeighbor
Input: S Є Solution, nbMsg Є Integer
Output: NewSolution
begin

// Remove the nbMsg paths from S and update the TEG
NewSolution←removeMessages(S,nbMsg);
NewSolution←constructSolutionPar(NewSolution);//Greedy

 parallel
	 construction
N e w S o l u t i o n ← c o n s t r u c t S o l u t i o n W i t h M o d i

 fiedDijkstra(NewSolution);//Construct the remaining paths one-by-
 one in TEG

return NewSolution;

Three versions of a search strategy are considered that embed the
neighborhood operator. They are respectively a basic random walk
search, that we call iterated random search (IRS), as specified in the
pseudo-code of Algorithm 4, and two local search schemes, that are, a

Citation: Zerbo B, Sevaux M, Rossi A, Cr'eput JC (2017) Optimizing the Cyclic K-conflict-free Shortest Path Problem in a Network-on-chip. Int J Comput Softw
Eng 2: 115. doi: https://doi.org/10.15344/2456-4451/2017/115

 Page 6 of 12

greedy descent local search, also called first improvement local
search (ILS-FI), specified in Algorithm 5, and a steepest descent local
search, also called best improvement local search (ILS-BI), specified
in Algorithm 6. The iterated random search simply makes evolve
the current solution by performing a given number of successive
neighborhood moves, and then selects the best solution encountered.
The method is very simple since very few operations are performed at
each iteration step. This can be seen on Algorithm 4. On the contrary,
the two local search schemes involve two internal loops each. As shown
in Algorithms 5 and 6, the outer loop controls the depth of the search.

Algorithm 4: iteratedRandomSearch
Input: S Є Solution, maxImprove, K number of messages
Output: BestSolution
begin

count ←0;
while count < maxImprove do

	 count ←count +1;
	 S←generateNeighbor(S, rand(1,K));
	 BestSolution←selectBest(S,BestSolution);

return BestSolution;

Algorithm 5: localSearch first-improvement (ILS-FI)
Input: S Є Solution, K number of messages
Output: BestSolution
begin

BestSolution←S;
improvementFound ←true;
while improvementFound /* depth of the search */ do

count ←0;
improvementFound ← false;
while
count < neighborhoodSampleSize and not improvementFound

 /* pivot rule */ do
count ←count +1;

S' ←generateNeighbor(S, rand(1,K)) /* neighborhood move */;
if isBest(S,BestSolution) then

	 BestSolution←S';
	 improvementFound ←true;

S←BestSolution;
return BestSolution;

Algorithm 6: localSearch best-improvement (ILS-BI)
Input: S Є Solution, K number of messages
Output: BestSolution
begin

BestSolution←S;
improvementFound ←true;
while improvementFound /* depth of the search */ do

count ←0;
improvementFound ← f alse;
while count < neighborhoodSampleSize /* pivot rule */ do

count ←count +1;
S' ←generateNeighbor(S, rand(1,K)) /* neighborhood move */;
if isBest(S',BestSolution) then

BestSolution←S';
improvementFound ←true;

 S←BestSolution;
 return BestSolution;

https://doi.org/10.15344/2456-4451/2017/115

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 2. 2017. 115

The algorithms stop when no improvement has been found. Because
all algorithms are random, there is no guarantee that a local minimum
has been reached even if the algorithm does not make any progress.
A given solution constitutes the pivot element around which are
performed the neighborhood search. Hence, the inner loop, that is
the difference between Algorithms 5 and 6, deals with the pivoting
rule, that determines to which better neighboring solution to move
to. When compared to the iterated random search above, note that
a supplementary variable S' has to be added to allow testing the
improvement move. In the greedy descent local search version, the
first encountered best solution becomes the new pivot element. In
the steepest descent version, it is the best solution within the whole
neighborhood that must be selected as the new pivot element. Here,
since the neighborhood is large and the method stochastic, the
procedure only examines a random sample of the neighborhood
set. The sample size is represented by the neighborhoodSampleSize
parameter in Algorithms 5 and 6. In experiments, it is set to
100 neighbors to examine. Another important parameter is the
neighborhood size itself, which is the maximum number of paths
selected for suppression in a single neighborhood move. Its impact
on performances will be investigated in experiments. It is set to
a maximum of nbMsg paths suppressed, with K being the total
message number. This means that at each move, the exact number of
suppressions is chosen randomly between 1 and K paths. Note that
this parameter is shared by both IRS and ILS methods.

Experiments

To evaluate the proposed algorithms, five real-life problems and
many random artificial derived instances are considered. They are all
based on four different NoC topologies of increasing sizes, respectively
named N1, N2, N3, N4 in Figures 2-7 in the appendix. The five real-
life problem instances were stated by Dafali [7] as representative of
concrete real-life applications. The TDMA specifications are detailed
in Figures 2-7. Four parameters characterize each instance. Instance
N1 is the smallest one, with (T,N,P,K) = (6,7,4,12), whereas instance
N4 is the largest one with (T,N,P,K) = (47,36,35,209). Next, we will
attach the (T,N,P,K) quadruplet to the instance name when necessary.
Instances N2 and N3 are of medium sizes. The N3 network topology
corresponds to two test cases, named N3A, N3B. In Figure 8, instance
N3A has the first three TDMA tables specified beside the components
IP0, IP1, IP2. Instance N3B includes the three TDMA tables specified
just below.

The proposed heuristics are developed in C++ and have been run
on a PC Intel Core Duo 3.0 GHz computer, where only 1 core was
used. All the tests are performed on a basis of 100 runs per problem
instance. For each test case, we evaluate the average total length value
and the average computation time based on 100 runs. The average
computation times are reported in seconds. The length is expressed in
time-slots. The algorithms are configured in such a way that they stop
their execution once an admissible solution has been found. Hence,
they are used as construction methods in this experiment. Here,
the hard task is the ability to quickly generate admissible solutions
with minimal lengths the number N of routers, the number P of IP
components, i.e., the source-destination nodes, and the number K. In
local search, the sample size as stated by the neighborhoodSampleSize
parameter of Algorithm 4 is set to 100. Other algorithm parameters
will be specified further in this section. To assess the reliability of
the statistical results, 95% confidence intervals for the sample mean,
based on standard deviation over the 100 runs, are computed when
necessary.

Citation: Zerbo B, Sevaux M, Rossi A, Cr'eput JC (2017) Optimizing the Cyclic K-conflict-free Shortest Path Problem in a Network-on-chip. Int J Comput Softw
Eng 2: 115. doi: https://doi.org/10.15344/2456-4451/2017/115

 Page 7 of 12

We evaluate the performance of the methods within three
sets of experiments. First, we study the impact of two important
components, that are, the improvement procedure itself, and the
addition of the one-to-one shortest path Dijkstra algorithm in TEG.
In a second set of experiments, we present a comparative evaluation
of the different methods, including the ILP solution and the iterated
search methods, when applied to the five real-life problems. We also
study the impact of the neighborhood size on performances. In a third
set of experiments, we evaluate the robustness of the approach against
many randomly generated traffic configurations, based on the original
NoC topologies. We discuss the problem of generating valid instances
in relation to a maximum flow problem, and evaluate the algorithm
performances as the saturation traffic level, i.e., number of injected
packets, increases.

Impact of the main algorithmic components

In this section, we study the performance of different combinations
of the construction/improvement operators and of the Dijkstra
procedure. We use the iterated random search (IRS) method
specified by Algorithm 1, in which the construction method
constructSolution corresponds to Algorithm 2 and the improvement
method improveSolution corresponds to Algorithm 4 to perform
the experiments. Adding or not the Dijkstra component, we study
the impact of construction and improvement operations when
adjusting the maxCount, maxConstruct, and maxImprove algorithm
parameters. The goal is to illustrate the importance of each added
new algorithm component that improves both computation time and
quality of solution substantially at the same time. The algorithm stops
once an admissible solution is found or when the maximum number
of iterations is reached.

Results are reported in Table 1. The procedure was executed on the
N3A(9-15-10-27) instance of Figure 8, for four different combinations
of the IRS loops. Results are averaged over 100 runs. Since it may be
the case that no admissible solution is produced during a run, we
report in a column named “Paths built”, the average percentage of
built paths related to the message number. We also report the average
computation time in seconds in the column named “CPU time”,
and the number of feasible solutions obtained over the 100 runs in
column “Feas. sol.”. Numerical results are given within six rows for
construction phase only, with construction respectively iterated
1, 1000, and 100000 times. For each configuration of the iteration
number, results are reported with or without the Dijkstra component.
The last configuration corresponds to the introduction of the
improvement loop and reiteration of the construction/improvement
phase. For this experiment, the algorithm parameters (maxCount,m
axConstruct,maxImprove) will take the values (50, 1000, 1000). The
outer loop reiterates 50 times the construction/improvement phases,
each one executing 1000 internal iterations.

Comparative evaluation on the real-life benchmark set

We now compare the different approaches considered in this paper,
including the ILP solution, on the five real-life benchmarks. We also
evaluate solutions for three different values of the neighborhood
size. The three heuristics are specified in Algorithms 1-6 with their
default parameters. In the iterated random search (IRS) method, the
combination of construction/improvement operations are set to the
values (maxCount,maxConstruct,maxImprove) = (50,1000,1000). In
the iterated local search (ILS) methods, the first or best improvement
local search replaces the random walk improvement procedure of the

https://doi.org/10.15344/2456-4451/2017/115

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 2. 2017. 115

The last two columns respectively report the average value over the
whole benchmark set and the 95% confidence intervals computed
based on standard deviation. We can observe that the three
heuristics produce solutions with similar length values, then, of
similar quality. A slight improvement of the computation time can
be observed for ILS methods against IRS. However, there is place
for improvement for the ILS methods, since as usual for heuristics
[24], complete copy of data structures could be avoided by a better
implantation of the local neighborhood operation. The ILP was
solved using the GLPK1 integer linear programming solver. Two
configurations of the ILP solver are considered and the results
reported in the last four rows in Table 2. In the two rows “first-sol”,
are reported the values corresponding to the first admissible solution
obtained during a run. This solution is not optimal. In the two rows
“opt-sol”, are reported the optimal solutions found. Only the two
smallest instances were solved successfully by the GLPK program
within a reasonable amount of computation time, that was set to a

Citation: Zerbo B, Sevaux M, Rossi A, Cr'eput JC (2017) Optimizing the Cyclic K-conflict-free Shortest Path Problem in a Network-on-chip. Int J Comput Softw
Eng 2: 115. doi: https://doi.org/10.15344/2456-4451/2017/115

 Page 8 of 12

IRS. This leads to the versions ILS-BI and ILS-FI respectively. The size
of the neighborhood sample examined at each pivoting operation, is
set to neighborhoodSampleSize = 100. The size of the neighborhood
itself is set to the maximum nbMsg of paths that can be suppressed
and rebuilt at each move. The choice is random between 1 and K. We
first report results for that default configuration, then we study the
effect of diminishing the neighborhood size.

Comparative numerical results are reported in Table 2. The first
row indicates the instance name and its characteristic parameters
(T,N,P,K), respectively period of cyclic emission, router number, IP
number, and message number. The other rows present the results
for the three heuristics with their neighborhood size and two
configurations of the ILP solver. For each method, are reported
the computation time and the total length, averaged on a basis of
100 runs per instance. The test cases are ordered by increasing size.
The N1 instance is the smallest one, whereas the N4 the larger one.

Config (it) Path built (%) CPU time (s) Feas. sol. (%)

Construction only

maxCount=1 without Dijkstra procedure 54 0.001 0

with Dijkstra procedure 81 0.001 0

maxCount=1000 without Dijkstra procedure 79 0.06 0

with Dijkstra procedure 96 0.03 9

maxCount=100000 without Dijkstra procedure 86 6 0

with Dijkstra procedure 100 6 100

Construction and improvement maxCount=50
maxConstruct=1000
maxImprove=1000

without Dijkstra procedure 95 9.5 4

with Dijkstra procedure 100 0.7 100

Table 1: Impact of the main algorithmic components on N3A instance.

N1(6-7-4-12) N2(8-9-7-28) N3A(9-15-10-27) N3B(9-15-10-24) N4(47-36-35-209) average deviation

IRS timea

length
0.002
53.3

0.11
119.5

0.70
131.7

0.82
119.6

8.89
1565

2.1
398

(±0.14)
(±3.5)

ILS-FI timea

length
0.001
53.5

0.15
117.8

0.69
129.8

0.84
118.6

7.25
1570

1.79
398

(±0.1)
(±3.5)

ILS-BI timea
length

0.001
53.7

0.17
119.0

0.66
127.1

0.85
118.0

7.57
1568

1.85
397

(±0.13)
(±3)

IRS timea
length

0.003
52.92

0.11
121.12

0.58
132.05

0.68
120.87

8.71
1572.80

2.01
400

(±0.16)
(±3.48)

ILS-FI timea
length

0.001
52.86

0.18
118.24

0.74
128.70

0.81
117.37

6.97
1568.66

1.74
397

(±0.11)
(±2.74)

ILS-BI timea
length

0.00
54.66

0.18
118.48

0.74
127.72

0.87
117.88

7.06
1574.62

1.77
399

(±0.10)
(±2.91)

IRS timea
length

0.002
52.8

0.17
118.9

0.61
132.9

0.61
120.3

6.50
1577

1.58
400

(±0.08)
(±3.89)

ILS-FI timea
length

0.001
53.73

0.22
119.88

1.44
130.85

1.81
118.84

7.35
1566.04

2.16
 398

(±0.12)
(±3.25)

ILS-BI timea
length

0.001
54.57

0.20
119.24

1.37
129.15

1.44
118.80

7.45
1567.36

2.09
398

(±0.13)
(±3.19)

first-sol timea
length

5
57

428
133

-
-

-
-

-
-

-
-

-
-

opt-sol timea
length

111
42

1464
76

-
-

-
-

-
-

-
-

-
-

IL
P

ne
ig

hb
or

ho
od

 la
rg

e
ne

ig
hb

or
ho

od
 m

ed
iu

m
ne

ig
hb

or
ho

od
 sm

al
l

Table 2: Comparative results on the whole benchmark set.
a Time per run in Intel Core Duo (3.0 GHz) seconds (1 core used), C++ program.
b Time per run in Intel core i3-2350M (2.30 GHzx4) seconds, GLPK program.

https://doi.org/10.15344/2456-4451/2017/115

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 2. 2017. 115

maximum of 48h for the largest instances. It is worth noting that the
ILP model generates a huge number of variables and constraints to
be tackled by the solver as the problem size grows. As an example,
the N3B instance case roughly produces 31 million variables with 5
hundred thousand constraints. According to the small instance cases
N1 and N2 that were solved exactly, the heuristic method generates
feasible solutions roughly at least 2000 times faster than the ILP solver.
We think that these results highlight the contrast of behaviors when
respectively dealing with an exact and heuristic method.

The two default parameter values of the neighborhood sample size
and neighborhood size, respectively, were set empirically after a first
round of experiments not reported in this paper. It appeared that
increasing the sample size made the ILS-BI clearly worst performing,
since it examines many more candidate neighborhood solutions at
each pivoting operation. About the neighborhood size itself, i.e., the
maximum number of paths suppressed/rebuilt at each move, we try
now to better evaluate its impact. We diminish the neighborhood size,
from actually all paths that can be suppressed (large neighborhood), to
half of the paths suppressed (medium neighborhood), and to exactly
2 paths suppressed (small neighborhood). We perform a complete
execution of the three heuristics on the whole benchmark set,
executing 100 runs per instance, for each of the three neighborhood
sizes. Average results are shown in Figure 8 within 95% confidence
interval. The two graphics in the figure let us evaluate the trade-off
between solution quality (length value) and computation time. The
graph on the left shows that length values are rather similar. Since
all confidence intervals overlap, the differences in the lengths look
not statistically significant. On the contrary, some disparities appear

Citation: Zerbo B, Sevaux M, Rossi A, Cr'eput JC (2017) Optimizing the Cyclic K-conflict-free Shortest Path Problem in a Network-on-chip. Int J Comput Softw
Eng 2: 115. doi: https://doi.org/10.15344/2456-4451/2017/115

 Page 9 of 12

between computation times, as shown in the right graph in the figure.
The first point to note is the similitude of behaviors between the ILS-
BI and ILSFI methods as the neighborhood size diminishes. This is
not surprising since the methods are similar and examine a relatively
small sample in the neighborhood. The second point to note is the
contrast of behaviors between ILS and IRS methods. While the former
approach performs significantly faster with a large neighborhood size,
the situation is inverted with a small neighborhood size since the latter
becomes significantly faster than the former. This casts a light on
the intensification/diversification tradeoffs into the methods. The
ILS searches for improvements around a given pivot element which
restricts the search region. But increasing the neighborhood size
augments diversification. On the contrary, the IRS performs random
steps in random directions starting from a given solution. This
naturally increases diversification. But decreasing the neighborhood
size restricts the search region. With regards to the trade-off between
computation times and lengths, it seems that all configurations yield
similar quality results, whereas fastest computation times occur for
the IRS with small neighborhood, or ILS methods with medium or
large neighborhood. Confidence intervals indicate that these last
configurations are the best ones.

The numerical results in Table 2 allow us to compare ILS-FI
and ILS-BI regardless of the neighborhood size and considering
simultaneously the time and the length, ILS-FI performances are
the best on N1, N2 and N4. However, those of ILS-BI are the best on
N3A. ILS-FI behaves better on small and large instances while ILS-
BI performs better on instances that we could describe as medium.
This confirms the best behavior of ILS-FI on many instances. In these

IlS-FI

random instances MT-real(%) MT-rand(%) MT max(%) time(s) length built(%) admis.(%)

N1-rand(6-7-4-12) 100 100 100 0.002 53 100 100

N2-rand(8-9-7-28) 100 100 100 0.17 117.5 100 100

N3A-rand(9-15-10-27) 90 87.86 90 0.49 126.9 100 100

N3B-rand(9-15-10-24) 90 85.54 89 0.50 117 100 100

N4-rand(47-36-35-209) 26.02 39.97 40 618.45 1405 93.86 0

average 81.20 82.67 83 123.92 363.9 98.77 -

deviation 0.0 (±0.1) 0.0 (±0.8) (±2.4) 0.0 -

Table 3: Results on random instances.

Figure 2: Impact of the neighborhood size on lengths and execution times.

https://doi.org/10.15344/2456-4451/2017/115

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 2. 2017. 115

experiments, our main goal was to give an insight of the important
contrast in computation time required when respectively dealing with
exact and heuristic methods. We should mention that further work
could adequately combine the benefit of both methods following
the spirit of “matheuristic” approaches that aim at dealing with ILP
acceleration according to the quick generation of feasible solutions
by heuristic procedures. We expect that such adequate combinations
could be studied in the future starting from the preliminary work
presented in this paper.

Evaluation on random instances

We first detail the random instance generator, then we evaluate
the local search approach on these randomly generated traffic
configurations. The section also illustrates the designer’s problem of
bandwidth decomposition and bridging the inaccessibility of many
real-live problem instances.

The random instance generator

To evaluate the robustness of the method against a large range of
traffic communication configurations, we have developed a generator
of random instances. Based upon an application communication
graph that specifies the inter-communications links opened between
a set of IP components, the goal is to generate the quantity of packets
that define the allocated bandwidth between each pair of source-
destination nodes. In other words, given a set of K source-destination
nodes (i, j) of a CKPP instance, the goal is to generate random packet
quantities xi j in a way consistent with the cyclic nature of the problem.
Since source-destination messages are emitted based on a temporal
cycle of length T, two types of constraints are to be satisfied. They
concern emitters and receivers to avoid trivially infeasible instances
respectively. They state that the allotted T time-slots must be shared
by emitters as well as by receivers. More formally, we state the problem
of bandwidth decomposition as follows.

Let ∏={1,2, . . .P} being the set of IPs, which may be either source
or destination nodes. We define the application communication
graph (ACG) as a matrix C = (ci j), 1 ≤ i, j ≤ P, such that ci j Є {0,1}
whenever i ≠ j, and cii = 0 otherwise. An entry cij is such that ci j = 1
if an open communication link exists from i to j, cij = 0 otherwise.
Given an ACG, the model involves variables xi j indicating the number
of packets associated to each source-destination link (i, j). Let s be a
lower bound on the number of packets emitted by a given source. The
generation of traffic instances, that we call Traffic Injection Problem
(TIP), consists in generating many and diverse random instances for
the CKPP.

Citation: Zerbo B, Sevaux M, Rossi A, Cr'eput JC (2017) Optimizing the Cyclic K-conflict-free Shortest Path Problem in a Network-on-chip. Int J Comput Softw
Eng 2: 115. doi: https://doi.org/10.15344/2456-4451/2017/115

 Page 10 of 12

We are here concerned with the generation of many flow
configurations of relatively good quality, rather than with necessarily
generating a single maximum flow configuration. The quantity ∑i,j
cijxij is the total flow that is injected in the network during the period
T. In order to measure the saturation level of the emitters as in [27],
we define the message throughput (MT) as the quantity (∑i,j cijxij/
PT)×100, that is, the percentage of the emitted packets related to
the available time-slots at each source node. Figure 9 illustrates the
problem of instance generation on a simple case. In (a) the ACG is
shown, whereas in (b) and (c) two optimal configurations of the traffic
flow are shown. We should note that, with a threshold of s = 0, optimal
solutions may be unsatisfactory since some IPs may have no packets
to communicate, as in (b). The goal is rather to share and decompose
the flow between emitters/receivers to allow to communicate, as in
(c). It is worth noting that the maximum flow value first depends on
the ACG structure, regardless of the NoC topology. As an example,
the MT cannot exceed 66,6% in the ACG in Figure 9. This example
illustrates how the guaranteed traffic approach constrains the
bandwidths to be carefully settled.

To generate many random traffic instances, we proceed in two main
steps as shown with Figure 10. First, as illustrated in (a), we randomly
partition the receiver bandwidth between its related emitters. The
random choices are done according to uniform sampling. The values
obtained at each receiver node define the maximum amount of traffic
that a related emitter node can send to that receiver. Second, as in (b),
we adjust proportionally these maximum bandwidths at the level of
each emitter, while trying to maximize the number of packets sent.
At each step, a difficulty arises because traffic values are integer values
rather than fractional values. Hence, fractional values are floored to
their nearest integer, and the lost packets are randomly re-injected
one by one to the different bandwidths, taking care of the maximum
available time-slots for each emitter/receiver. The random choices
also take care of the threshold s, in such a way that at least s packets
are sent by each emitter node. For the experiments, this threshold is
set to s = 2 packets, since messages contain at least a header packet
followed by a data packet. Following part of the results in 3, we note
that the MT is slightly inversely proportional to the size of T.

Performances of local search against random instances

We evaluate the performance according to a wide range of random
traffic configurations. Starting from the five real-life test cases and their
respective communication graphs, we randomly generate new traffic
values following the random process specified above. For each test case,
we generate 100 new traffic instances with a threshold of two packets
per message. Then we run the algorithm on these instances and evaluate
the average value over these 100 runs. Results are presented in Table 3.

Figure 9: An ACG (a), and two maximum traffic flow configurations (b-c).

Figure 10: Random partition of a receiver bandwidth (a), adjustment of
an emitter bandwidth (b).

https://doi.org/10.15344/2456-4451/2017/115

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 2. 2017. 115

Only the local search first-improvement is used. Two columns “MT-
real” and “MT-rand” respectively report the message throughput of
the real-life instances and of their random instances counterpart in
average. The column “MT max” gives the maximum MT over the
100 generated instances. In addition to the execution time in seconds
and length value, are reported the percentage of built paths and the
percentage of admissible solutions found over the 100 runs. On the
one hand, we can note that except the N4 test case, all the instances
are solved successfully, and in a similar or shorter computation time
than for the original reallife instances reported in Table 2. We can also
note that, except for the N4 test case, the random MTs are all similar
or inferior than those of the real-life instances. On the other hand, we
can note that the N4 instance is never solved successfully, since only
94% of the paths are built on average, and no admissible solution was
found. This should be explained by the higher random MT (39.97%)
which is 50% higher than for the real case instance (26%).

To evaluate to which extent the algorithm performs efficiently as
a function of MT, we conduct new experiments. We progressively
suppress packets from messages in order to gradually decrease the
MT value. The results are shown on the two graphics of Figure 11.
On the left part, are respectively shown the percentage of admissible
paths and solutions found. On the right part, are indicated the related
computation times. We can observe that 100% of the paths built are
obtained below an intermediate MT level of roughly 30%. This means
that the application can increase the volume of data exchanges from
26% initially to 30%, while preserving the actual NoC topology. As in
a bin packing problem, packets are packed in the transmission links
until some overload occurs. Hence, this study casts a light on the
problem of network dimensioning, as the designer adjusts the packet
quantities, while trying at the same time to guarantee contention-free
routing, especially for large scale NoC.

Conclusion

We have presented a combinatorial optimization problemwhich
models conflict-free routing in a networkon-chip with guaranteed
traffic. Based on TDMA techniques, the problem can be seen as an
extension of a K-shortest paths problem combined with a bin packing
problem, where time plays an important role. Messages are emitted
in a cyclic way and the problem goal resides in the efficient allocation
of the available time-slots for conflict-free routing, while minimizing
path lengths. The solution methods are based on a time-expanded

Citation: Zerbo B, Sevaux M, Rossi A, Cr'eput JC (2017) Optimizing the Cyclic K-conflict-free Shortest Path Problem in a Network-on-chip. Int J Comput Softw
Eng 2: 115. doi: https://doi.org/10.15344/2456-4451/2017/115

 Page 11 of 12

graph structure able to memorize time-slot occupation. An ILP
model is stated for the problem, but only very small size instances
were solved exactly and successfully in a reasonable amount of time.
Three heuristic search methods were presented for attempting to
generate feasible solutions fast. They were applied on a set of real-life
benchmarks and on many randomly generated traffic configurations.
All the heuristics methods were able to find feasible solutions on
the real-life benchmarks in few seconds. Experiments show that the
addition of a one-to-one path Dijkstra procedure into the local search
clearly leads to a great improvement on both length minimization
and computation time. Also, the generated random instances helped
us determine the limits of the approach as the message throughput
increases. The main limit of this GT traffic modeling is the lack of
bandwidths flexibility between IPs that are fixed once and for all. It
is resulting in an over-dimensioning of network to satisfy the worst
case conditions. Making flexible bandwidth between the IPs is a track
of future graph structure able to memorize time-slot occupation. An
ILP model is stated for the problem, but only very small size instances
were solved exactly and successfully in a reasonable amount of time.
Three heuristic search methods were presented for attempting to
generate feasible solutions fast. They were applied on a set of real-life
benchmarks and on many randomly generated traffic configurations.
All the heuristics methods were able to find feasible solutions on
the real-life benchmarks in few seconds. Experiments show that the
addition of a one-to-one path Dijkstra procedureinto the local search
clearly leads to a great improvement on both length minimization
and computation time. Also, the generated random instances helped
us determine the limits of the approach as the message throughput
increases. The main limit of this GT traffic modeling is the lack of
bandwidths flexibility between IPs that are fixed once and for all. It is
resulting in an over-dimensioning of network to satisfy the worst case
conditions. Making flexible bandwidth between the IPs is a track of
future research. The idea would be a dynamic reconfiguration of the
routing at execution time. Several TDMA tables would be introduced
in emitters. And at the beginning of each cycle, each emitter could
change the transmission table. This change should modify bandwidth
and communication paths. The challenge would be, at the time of
execution, the potential reallocation of vacant time-slots during
dynamic and mutually exclusive changes of TDMA from a same
emitter, without disturbing or stopping the system.

Competing Interests

The authors declare that they have no competing interests.

Figure 11: Performances according to different levels of the traffic injection rate in the N4 NoC.

https://doi.org/10.15344/2456-4451/2017/115

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 2. 2017. 115

References

1.	 DallyW, Towles B (2001) Route packets, not wires: On-chip interconnection
networks. Proceedings of the 38th Design Automation Conference.

2.	 Benini L, Micheli G (2002) Networks on Chips: A New SoC Paradigm.
Computer 35: 70-78.

3.	 Agarwal A, Iskander C, Shankar R (2009) Survey of network on chip (NoC)
architectures and contributions. Journal of Engineering, Computing, and
Architecture 3: 1-15.

4.	 Goossens K, van Meerbergen J, Peeters A, Wielage R (2002) Networks
on Silicon: Combining Best-Effort and Guaranteed Services. Design,
Automation and Test in Europe Conference and Exhibition, Proceedings,
pp 423-425.

5.	 Cong J, Liu C, Reinman G (2010) ACES: application-specific cycle
elimination and splitting for deadlock-free routing on irregular network-on-
chip. In: Proceedings of the 47th Design Automation Conference, DAC ’10,
ACM New York, USA, pp 443-448.

6.	 Evain S, Diguet JP (2007) Efficient space-time noc path allocation based
on mutual exclusion and prereservation. In: Proceedings of the 17th ACM
Great Lakes symposium on VLSI, Italy.

7.	 Dafali R (2011) Conception des r´eseaux sur puce reconfigurables
dynamiquement. Phd dissertation, University of South Brittany, France.

8.	 Millberg M, Nilsson E, Thid R, Jantsch A (2004) Guaranteed bandwidth
using looped containers in temporally disjoint networks within the Nostrum
network on chip. In: Proceedings of the conference on Design, automation
and test in Europe.

9.	 Marescaux T, Brick´e B, Debacker P, Nollet V, Corporaal H (2005) Dynamic
time-slot allocation for QoS enabled networks on chip. In: 3rd Workshop on
Embedded Systems for Real-Time Multimedia, pp 47-52.

10.	 Hansson A, Goossens K, Radulescu A (2007) A unified approach to
constrained mapping and routing on network-on-chip architectures. In:
CODES+ISSS’05 Proceedings of the 3rd IEEE/ACM/IFIP international
conference on Hardware/software codesign and system synthesis, pp 75-
80.

11.	 Stefan R, Goossens K (2011) Enhancing the security of time-division-
multiplexing networks-on-chip through the use of multipath routing. In:
Proceedings of the 4th International Workshop on Network on Chip
Architectures, ACM New York.

12.	 Ge F, Wu N (2010) Genetic algorithm based mapping and routing approach
for network on chip architectures. Chinese journal of Electronics 19: 91-96.

13.	 Lin CA, Hsin HK, Chang EJ,Wu AYA (2013) ACO-based fault-aware routing
algorithm for networkon-chip systems. In: SIPS 2013 Proceedings, pp 342-
347.

14.	 Benmessaoud Gabis A, Koudil M (2016) NoC routing protocols-objective-
based classification. Journal of Systems Architecture 66: 14-32.

15.	 K¨ohler E, Langkau K, Skutella M (2002) Time-expanded graphs for flow-
dependent transit times. European Symposium on Algorithms 2461: 599-
611.

16.	 Kolliopoulos SG (2007) Edge-disjoint paths and unsplittable flow. In: T. F.
Gonzalez (ed) Handbook of Approximation Algorithms and Metaheuristics,
Chapman & Hall/CRC.

17.	 Karp RM (1975) On the computational complexity of combinatorial
problems. Networks 5: 45-68.

18.	 Lynch JF (1975) The equivalence of theorem proving and the interconnection
problem. ACM SIGDA Newsletter 5: 31-36.

19.	 Gonzalez TF, Serena D (2004) Complexity of pairwise shortest path routing
in the grid. Theoretical Computer Science 326: 155-185.

20.	 Desrochers M, Soumis F (1988) A generalized permanent labelling
algorithm for the shortest path problem with time windows. INFOR 26: 191-
212.

21.	 M¨ohring RH, K¨ohler E, Gawrilow E, Stenzel B (2004) Conflict-free Real-
time AGV Routing. Operations Research Proceedings, pp 18-24.

22.	 Ioachim I, G´elinas S, Soumis F, Desrosiers J (1998) A dynamic
programming algorithm for the shortest path problem with time windows
and linear node costs. Networks 31: 193-204.

Citation: Zerbo B, Sevaux M, Rossi A, Cr'eput JC (2017) Optimizing the Cyclic K-conflict-free Shortest Path Problem in a Network-on-chip. Int J Comput Softw
Eng 2: 115. doi: https://doi.org/10.15344/2456-4451/2017/115

 Page 12 of 12

23.	 Powell WB, Chen ZL (1998) A Generalized Threshold Algorithm for the
Shortest Path Problem with Time Windows. In: DIMACS Series in Discrete
Mathematics and Theoretical Computer Science.

24.	 Ford LR, Fulkerson DR (1958) Constructing maximal dynamic flows from
static flows. Operations Research 6: 419-433.

25.	 Johnson DS, McGeoch LA (1997) The Traveling Salesman Problem: A
Case Study in Local Optimization.

26.	 Schrimpf G, Schneider K, Stamm-Wilbrandt H, Dueck V (2000) Record
Breaking Optimization Results Using the Ruin and Recreate Principle. J of
Computational Physics 159: 139-171.

27.	 Pande PP, Grecu C, Ivanov A, Saleh R (2005) Performance Evaluation and
Design Trade-Offs for Network-on-Chip Interconnect Architectures. IEEE
Transaction on Computers 54: 1025-1040.

http://ieeexplore.ieee.org/document/935594/
http://ieeexplore.ieee.org/document/935594/
http://ieeexplore.ieee.org/document/976921/
http://ieeexplore.ieee.org/document/976921/
https://www.scientificjournals.org/journals2009/articles/1423.pdf
https://www.scientificjournals.org/journals2009/articles/1423.pdf
https://www.scientificjournals.org/journals2009/articles/1423.pdf
https://doi.org/10.1109/DATE.2002.998309
https://doi.org/10.1109/DATE.2002.998309
https://doi.org/10.1109/DATE.2002.998309
https://doi.org/10.1109/DATE.2002.998309
http://ieeexplore.ieee.org/document/5523151/
http://ieeexplore.ieee.org/document/5523151/
http://ieeexplore.ieee.org/document/5523151/
http://ieeexplore.ieee.org/document/5523151/
http://dl.acm.org/citation.cfm%3Fid%3D1228892%26dl%3DACM%26coll%3DDL%26CFID%3D792682895%26CFTOKEN%3D70435810
http://dl.acm.org/citation.cfm%3Fid%3D1228892%26dl%3DACM%26coll%3DDL%26CFID%3D792682895%26CFTOKEN%3D70435810
http://dl.acm.org/citation.cfm%3Fid%3D1228892%26dl%3DACM%26coll%3DDL%26CFID%3D792682895%26CFTOKEN%3D70435810
http://ieeexplore.ieee.org/abstract/document/1269001/
http://ieeexplore.ieee.org/abstract/document/1269001/
http://ieeexplore.ieee.org/abstract/document/1269001/
http://ieeexplore.ieee.org/abstract/document/1269001/
http://ieeexplore.ieee.org/document/1518069/%3Freload%3Dtrue%26arnumber%3D1518069
http://ieeexplore.ieee.org/document/1518069/%3Freload%3Dtrue%26arnumber%3D1518069
http://ieeexplore.ieee.org/document/1518069/%3Freload%3Dtrue%26arnumber%3D1518069
http://ieeexplore.ieee.org/document/4076316/
http://ieeexplore.ieee.org/document/4076316/
http://ieeexplore.ieee.org/document/4076316/
http://ieeexplore.ieee.org/document/4076316/
http://ieeexplore.ieee.org/document/4076316/
http://www.es.ele.tue.nl/~kgoossens/2011-nocarc.pdf
http://www.es.ele.tue.nl/~kgoossens/2011-nocarc.pdf
http://www.es.ele.tue.nl/~kgoossens/2011-nocarc.pdf
http://www.es.ele.tue.nl/~kgoossens/2011-nocarc.pdf
https://doi.org/10.1109/SiPS.2013.6674530
https://doi.org/10.1109/SiPS.2013.6674530
https://doi.org/10.1109/SiPS.2013.6674530
http://www.sciencedirect.com/science/article/pii/S1383762116300303
http://www.sciencedirect.com/science/article/pii/S1383762116300303
https://link.springer.com/chapter/10.1007/3-540-45749-6_53
https://link.springer.com/chapter/10.1007/3-540-45749-6_53
https://link.springer.com/chapter/10.1007/3-540-45749-6_53
https://link.springer.com/chapter/10.1007%252F978-3-642-11120-4_3
https://link.springer.com/chapter/10.1007%252F978-3-642-11120-4_3
http://dl.acm.org/citation.cfm%3Fid%3D1061430
http://dl.acm.org/citation.cfm%3Fid%3D1061430
http://www.sciencedirect.com/science/article/pii/S0304397504004050
http://www.sciencedirect.com/science/article/pii/S0304397504004050
http://www.tandfonline.com/doi/abs/10.1080/03155986.1988.11732063
http://www.tandfonline.com/doi/abs/10.1080/03155986.1988.11732063
http://www.tandfonline.com/doi/abs/10.1080/03155986.1988.11732063
https://link.springer.com/chapter/10.1007/3-540-27679-3_3
https://link.springer.com/chapter/10.1007/3-540-27679-3_3
http://onlinelibrary.wiley.com/doi/10.1002/%28SICI%291097-0037%28199805%2931:3%253C193::AID-NET6%253E3.0.CO%3B2-A/abstract
http://onlinelibrary.wiley.com/doi/10.1002/%28SICI%291097-0037%28199805%2931:3%253C193::AID-NET6%253E3.0.CO%3B2-A/abstract
http://onlinelibrary.wiley.com/doi/10.1002/%28SICI%291097-0037%28199805%2931:3%253C193::AID-NET6%253E3.0.CO%3B2-A/abstract
https://doi.org/10.15344/2456-4451/2017/115
http://citeseerx.ist.psu.edu/viewdoc/download%3Fdoi%3D10.1.1.150.2020%26rep%3Drep1%26type%3Dpdf
http://citeseerx.ist.psu.edu/viewdoc/download%3Fdoi%3D10.1.1.150.2020%26rep%3Drep1%26type%3Dpdf
http://citeseerx.ist.psu.edu/viewdoc/download%3Fdoi%3D10.1.1.150.2020%26rep%3Drep1%26type%3Dpdf
http://dl.acm.org/citation.cfm%3Fid%3D2780504
http://dl.acm.org/citation.cfm%3Fid%3D2780504
https://www.scribd.com/document/293868823/The-Traveling-Salesman-Problem-A-Case-Study-in-Local-Optimization
https://www.scribd.com/document/293868823/The-Traveling-Salesman-Problem-A-Case-Study-in-Local-Optimization
http://www.sciencedirect.com/science/article/pii/S0021999199964136
http://www.sciencedirect.com/science/article/pii/S0021999199964136
http://www.sciencedirect.com/science/article/pii/S0021999199964136
https://doi.org/10.1109/TC.2005.134
https://doi.org/10.1109/TC.2005.134
https://doi.org/10.1109/TC.2005.134
https://www.ncbi.nlm.nih.gov/pubmed/23519703

